联合学习(FL)是一个带有边缘计算的充填地的新兴分布式机器学习范式,是具有在移动边缘设备上具有新颖应用的有前途的区域。在FL中,由于移动设备通过共享模型更新,因此在中央服务器的协调下基于其自身的数据进行组合培训模型,培训数据保持私密。但是,在没有数据的核心可用性的情况下,计算节点需要经常传送模型更新以获得汇聚。因此,本地计算时间与将本地模型更新一起创建本地模型更新以及从服务器发送到服务器的时间导致总时间的延迟。此外,不可靠的网络连接可以妨碍这些更新的有效通信。为了解决这些问题,我们提出了一个延迟有效的流动机制,可以减少模型融合所需的总时间(包括计算和通信延迟)和通信轮。探索各种参数对延迟的影响,我们寻求平衡无线通信(谈话)和本地计算之间的权衡(为工作)。我们与整体时间作为优化问题制定了关系,并通过广泛的模拟展示了我们方法的功效。
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
个性化联合学习(PFL)是一种新的联邦学习(FL)方法,可解决分布式用户设备(UES)生成的数据集的异质性问题。但是,大多数现有的PFL实现都依赖于同步培训来确保良好的收敛性能,这可能会导致严重的散乱问题,在这种情况下,训练时间大量延长了最慢的UE。为了解决这个问题,我们提出了一种半同步PFL算法,被称为半同步个性化的FederatedAveraging(Perfeds $^2 $),而不是移动边缘网络。通过共同优化无线带宽分配和UE调度策略,它不仅减轻了Straggler问题,而且还提供了收敛的培训损失保证。我们根据每回合的参与者数量和回合数量来得出Perfeds2收敛速率的上限。在此基础上,可以使用分析解决方案解决带宽分配问题,并且可以通过贪婪算法获得UE调度策略。实验结果与同步和异步PFL算法相比,验证了Perfeds2在节省训练时间和保证训练损失的收敛方面的有效性。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
物联网(IoT)的扩散以及对设备进行感应,计算和通信功能的广泛使用,激发了人工智能增强的智能应用程序。经典人工智能算法需要集中的数据收集和处理,这些数据收集和处理在现实的智能物联网应用程序中,由于日益增长的数据隐私问题和分布式数据集。联合学习(FL)已成为一个分布式隐私的学习框架,该框架使IoT设备能够通过共享模型参数训练全局模型。但是,由于频繁的参数传输引起的效率低下会大大降低FL性能。现有的加速算法由两种主要类型组成,包括本地更新,考虑通信与计算之间的权衡以及参数压缩之间的权衡,考虑到通信和精度之间的权衡。共同考虑这两个权衡并适应平衡其对融合的影响尚未解决。为了解决该问题,本文提出了一种新型有效的自适应联合优化(EAFO)算法,以提高FL的效率,该算法通过共同考虑两个变量(包括本地更新和参数压缩)来最大程度地减少学习误差,并使FL能够自适应地调整两个变量和两个变量和两个变量。计算,沟通和精确度之间的平衡权衡。实验结果表明,与最先进的算法相比,提出的EAFO可以更快地实现更高的精度。
translated by 谷歌翻译
在联合学习(FL)设置中,许多设备有助于培训通用模型。我们提出了一种选择提供更新的设备,以实现改进的概括,快速收敛和更好的设备级别性能。我们制定了最低 - 最大优化问题,并将其分解为原始偶的设置,在该设置中,双重性差距用于量化设备级的性能。我们的策略通过\ emph {exploitation}的随机设备选择,通过简化的设备贡献来结合数据新鲜度。这在概括和个性化方面都改善了受过训练的模型的性能。在开发阶段,应用了修改的截短蒙特卡洛(TMC)方法,以估计设备的贡献并降低开销的通信。实验结果表明,所提出的方法具有竞争性能,对基线方案的沟通开销和竞争性个性化绩效较低。
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
联邦边缘学习(诱导)吸引了许多隐私范例的关注,以有效地纳入网络边缘的分布式数据来训练深度学习模型。然而,单个边缘服务器的有限覆盖范围导致参与者的客户节点数量不足,这可能会损害学习性能。在本文中,我们调查了一种新颖的感觉框架,即半分散的联邦边缘学习(SD-INES),其中采用多个边缘服务器集体协调大量客户端节点。通过利用边缘服务器之间的低延迟通信进行高效的模型共享,SD-Feels可以包含更多的培训数据,同时与传统联合学习相比享受更低的延迟。我们详细介绍了三个主要步骤的SD感觉的培训算法,包括本地模型更新,群集内部和群集间模型聚合。在非独立和相同分布的(非IID)数据上证明了该算法的收敛性,这也有助于揭示关键参数对培训效率的影响,并提供实用的设计指南。同时,边缘装置的异质性可能导致级体效应并降低SD感应的收敛速度。为了解决这个问题,我们提出了一种具有SD-Iave的稳定性舒长方案的异步训练算法,其中,还分析了收敛性能。模拟结果展示了所提出的SD感觉和证实我们分析的算法的有效性和效率。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
Federated Learning (FL) has become a key choice for distributed machine learning. Initially focused on centralized aggregation, recent works in FL have emphasized greater decentralization to adapt to the highly heterogeneous network edge. Among these, Hierarchical, Device-to-Device and Gossip Federated Learning (HFL, D2DFL \& GFL respectively) can be considered as foundational FL algorithms employing fundamental aggregation strategies. A number of FL algorithms were subsequently proposed employing multiple fundamental aggregation schemes jointly. Existing research, however, subjects the FL algorithms to varied conditions and gauges the performance of these algorithms mainly against Federated Averaging (FedAvg) only. This work consolidates the FL landscape and offers an objective analysis of the major FL algorithms through a comprehensive cross-evaluation for a wide range of operating conditions. In addition to the three foundational FL algorithms, this work also analyzes six derived algorithms. To enable a uniform assessment, a multi-FL framework named FLAGS: Federated Learning AlGorithms Simulation has been developed for rapid configuration of multiple FL algorithms. Our experiments indicate that fully decentralized FL algorithms achieve comparable accuracy under multiple operating conditions, including asynchronous aggregation and the presence of stragglers. Furthermore, decentralized FL can also operate in noisy environments and with a comparably higher local update rate. However, the impact of extremely skewed data distributions on decentralized FL is much more adverse than on centralized variants. The results indicate that it may not be necessary to restrict the devices to a single FL algorithm; rather, multi-FL nodes may operate with greater efficiency.
translated by 谷歌翻译
用于联合学习(FL)的最佳算法设计仍然是一个打开的问题。本文探讨了实用边缘计算系统中FL的全部潜力,其中工人可能具有不同的计算和通信功能,并且在服务器和工人之间发送量化的中间模型更新。首先,我们介绍了FL,即GenQSGD的一般量化并行迷你批量随机梯度下降(SGD)算法,即GenQSGD,其由全球迭代的数量参数化,所有工人的本地迭代的数量以及迷你批量大小。我们还分析了其算法参数的任何选择的收敛误差。然后,我们优化算法参数,以最小化时间约束和收敛误差约束下的能量成本。优化问题是具有非可分辨率约束函数的具有挑战性的非凸面问题。我们提出了一种迭代算法,可以使用高级优化技术获得KKT点。数值结果证明了现有的GenQSGD的显着增益,并揭示了最佳设计的重要性FL算法。
translated by 谷歌翻译
联合学习(FL)是一个蓬勃发展的分布式机器学习框架,其中中心参数服务器(PS)协调许多本地用户以训练全局一致的模型。传统的联合学习不可避免地依赖于具有PS的集中拓扑。因此,一旦PS失败,它将瘫痪。为了缓解如此单点故障,特别是在PS上,一些现有的工作已经提供了CDSGD和D-PSGD等分散的FL(DFL)实现,以便于分散拓扑中的流体。然而,这些方法仍存在一些问题,例如,在CDSGD中的用户最终模型和D-PSGD中的网络范围的模型平均必需品之间存在一些问题。为了解决这些缺陷,本文设计了一种作为DACFL的新DFL实现,其中每个用户使用自己的训练数据列举其模型,并通过对称和双随机矩阵将中间模型与其邻居交换。 DACFL将每个用户本地培训的进度视为离散时间过程,并采用第一个订单动态平均共识(FODAC)方法来跟踪\ Texit {平均模型}在没有PS的情况下。在本文中,我们还提供了DACFL的理论收敛性分析,即在I.I.D数据的前提下,以加强其合理性。 Mnist,Fashion-Mnist和CiFar-10的实验结果验证了我们在几间不变性和时变网络拓扑中的解决方案的可行性,并在大多数情况下声明DACFL优于D-PSGD和CDSGD。
translated by 谷歌翻译
在本章中,我们将主要关注跨无线设备的协作培训。培训ML模型相当于解决优化问题,并且在过去几十年中已经开发了许多分布式优化算法。这些分布式ML算法提供数据局部性;也就是说,可以协同地培训联合模型,而每个参与设备的数据仍然是本地的数据。这个地址,一些延伸,隐私问题。它们还提供计算可扩展性,因为它们允许利用分布在许多边缘设备的计算资源。然而,在实践中,这不会直接导致整体学习速度的线性增益与设备的数量。这部分是由于通信瓶颈限制了整体计算速度。另外,无线设备在其计算能力中具有高度异构,并且它们的计算速度和通信速率都可能由于物理因素而高度变化。因此,考虑到时变通信网络的影响以及器件的异构和随机计算能力,必须仔细设计分布式学习算法,特别是在无线网络边缘实现的算法。
translated by 谷歌翻译
联合学习(FL)已成为跨无线边缘设备分配机器学习的流行方法。在这项工作中,我们考虑在设备 - 服务器通信延迟和设备计算异质性下优化FL的模型性能和资源利用之间的权衡。我们提出的StofedDelav算法将本地 - 全局模型组合器包含到FL同步步骤中。我们理论上表征了Stofeddelav的收敛行为,并获得了最佳的组合权重,这考虑了每个设备的全局模型延迟和预期的局部梯度误差。然后,我们制定了一种网络感知优化问题,该问题调整设备的小靶尺寸,以共同最大限度地减少能量消耗和机器学习训练丢失,并通过一系列凸起近似来解决非凸面问题。我们的模拟表明,当调整小批准和组合重量时,STOFeddelav在模型收敛速度和网络资源利用方面优于目前的艺术。此外,我们的方法可以减少模型训练期间所需的上行链路通信轮的数量,以达到相同的精度。
translated by 谷歌翻译