车辆网络中的传感器数据共享可以显着提高连接自动化车辆环境感知的范围和准确性。已经开发了用于传播和融合传感器数据的不同概念和方案。对于这些方案而言,传感器的测量错误损害了感知质量,并可能导致道路交通事故。具体而言,当传感器的测量误差(也称为测量噪声)尚不清楚并且时间变化时,数据融合过程的性能受到限制,这代表了传感器校准的重大挑战。在本文中,我们考虑了具有车辆到基础设施和车辆到车辆通信的车辆网络中的传感器数据共享和融合。我们提出了一种名为双向反馈噪声估计(BIFNOE)的方法,其中边缘服务器从车辆收集和缓存传感器测量数据。边缘在双动态滑动时间窗口中交替估计噪声和目标,并以低通信成本来增强每辆车的分布式合作环境感测。我们通过模拟评估了应用程序方案中提出的算法和数据传播策略,并表明感知精度平均提高了80%左右,仅12 kbps上行链路和28 kbps的下行链路带宽。
translated by 谷歌翻译
深度学习是具有自动驾驶汽车和智能交通基础设施的合作智能运输系统(C-ITS)的环境感知功能的关键方法。在当今的C-IT中,智能流量参与者能够及时生成和传输大量数据。但是,由于隐私限制,这些数据不能直接用于模型培训。在本文中,我们介绍了一个联合学习框架应对等级异质性(H2-FED),该框架可以显着增强常规的预训练的深度学习模型。该框架利用车辆网络中连接的公共交通代理的数据,而不会影响用户数据隐私。通过协调包括路边单元和道路交通云在内的现有交通基础设施,该模型参数可有效地通过车辆通信和层次汇总进行分发。考虑到交通代理和路边单元之间数据分布,计算和通信功能的个人异质性,我们采用一种新方法来解决框架体系结构不同聚合层的异质性,即路边单元和云的集合。实验结果表明,根据当前通信网络中异质性的知识,我们的方法可以很好地平衡学习准确性和稳定性。与其他基线方法相比,联合数据集的评估表明,我们的框架更具通用性和功能,尤其是在沟通质量低的应用程序方案中。即使90%的代理人及时断开连接,预先训练的深度学习模型仍然可以稳定融合,并且收敛后其准确性可以从68%提高到90%以上。
translated by 谷歌翻译
感知环境是实现合作驾驶自动化(CDA)的最基本关键之一,该关键被认为是解决当代运输系统的安全性,流动性和可持续性问题的革命性解决方案。尽管目前在计算机视觉的物体感知领域正在发生前所未有的进化,但由于不可避免的物理遮挡和单辆车的接受程度有限,最先进的感知方法仍在与复杂的现实世界流量环境中挣扎系统。基于多个空间分离的感知节点,合作感知(CP)诞生是为了解锁驱动自动化的感知瓶颈。在本文中,我们全面审查和分析了CP的研究进度,据我们所知,这是第一次提出统一的CP框架。审查了基于不同类型的传感器的CP系统的体系结构和分类学,以显示对CP系统的工作流程和不同结构的高级描述。对节点结构,传感器模式和融合方案进行了审查和分析,并使用全面的文献进行了详细的解释。提出了分层CP框架,然后对现有数据集和模拟器进行审查,以勾勒出CP的整体景观。讨论重点介绍了当前的机会,开放挑战和预期的未来趋势。
translated by 谷歌翻译
Realizing human-like perception is a challenge in open driving scenarios due to corner cases and visual occlusions. To gather knowledge of rare and occluded instances, federated learning assisted connected autonomous vehicle (FLCAV) has been proposed, which leverages vehicular networks to establish federated deep neural networks (DNNs) from distributed data captured by vehicles and road sensors. Without the need of data aggregation, FLCAV preserves privacy while reducing communication costs compared with conventional centralized learning. However, it is challenging to determine the network resources and road sensor placements for multi-stage training with multi-modal datasets in multi-variant scenarios. This article presents networking and training frameworks for FLCAV perception. Multi-layer graph resource allocation and vehicle-road contrastive sensor placement are proposed to address the network management and sensor deployment problems, respectively. We also develop CarlaFLCAV, a software platform that implements the above system and methods. Experimental results confirm the superiority of the proposed techniques compared with various benchmarks.
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译
我们考虑一个用于边缘计算应用程序的智能传感器网络,该网络采样了感兴趣的信号,并将更新发送到基站进行远程全局监视。传感器配备了传感和计算,并且可以在传输前在板载上发送原始数据或处理它们。边缘的有限硬件资源产生基本的潜伏期 - 准确性权衡:原始测量值不准确,但及时,而计算延迟后准确的处理更新可用。同样,如果传感器在板载处理需要数据压缩,则无线通信引起的延迟可能会更高。因此,需要决定何时传感器应传输原始测量或依靠本地处理以最大程度地提高整体网络性能。为了解决这个传感设计问题,我们对一个嵌入计算和通信延迟的估计理论优化框架进行建模,并提出一种基于强化学习的方法,以在每个传感器上动态分配计算资源。我们提出的方法的有效性是通过数值模拟的验证,该案例研究是由无人机和自动驾驶车辆驱动的案例研究。
translated by 谷歌翻译
合作感知的想法是从多辆车之间的共同感知数据中受益,并克服单车上车载传感器的局限性。但是,由于本地化不准确,通信带宽和模棱两可的融合,多车信息的融合仍然具有挑战性。过去的实践通过放置精确的GNSS定位系统来简化问题,手动指定连接的车辆数量并确定融合策略。本文提出了一个基于地图的合作感​​知框架,名为MAP容器,以提高合作感的准确性和鲁棒性,最终克服了这个问题。概念“地图容器”表示地图是将所有信息转换为地图坐标空间的平台,并将不同的信息源合并到分布式融合体系结构中。在拟议的MAP容器中,考虑使用GNSS信号和传感器功能和地图功能之间的匹配关系以优化环境状态的估计。对仿真数据集和房地车平台的评估结果验证了所提出的方法的有效性。
translated by 谷歌翻译
实现自动化车辆和外部服务器,智能基础设施和其他道路使用者之间的安全可靠的高带宽低度连通性是使全自动驾驶成为可能的核心步骤。允许这种连接性的数据接口的可用性有可能区分人造代理在连接,合作和自动化的移动性系统中的功能与不具有此类接口的人类操作员的能力。连接的代理可以例如共享数据以构建集体环境模型,计划集体行为,并从集中组合的共享数据集体学习。本文提出了多种解决方案,允许连接的实体交换数据。特别是,我们提出了一个新的通用通信界面,该界面使用消息排队遥测传输(MQTT)协议连接运行机器人操作系统(ROS)的代理。我们的工作整合了以各种关键绩效指标的形式评估连接质量的方法。我们比较了各种方法,这些方法提供了5G网络中Edge-Cloud LiDAR对象检测的示例性用例所需的连接性。我们表明,基于车辆的传感器测量值的可用性与从边缘云中接收到相应的对象列表之间的平均延迟低于87毫秒。所有实施的解决方案均可为开源并免费使用。源代码可在https://github.com/ika-rwth-aachen/ros-v2x-benchmarking-suite上获得。
translated by 谷歌翻译
Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex urban environments. The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, shake in the wind, while the traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the challenges are also explored while prioritizing practical deployment.
translated by 谷歌翻译
合作感知的一个主要挑战是加重从各种来源进行的测量,以获得准确的结果。理想情况下,权重应与传感信息中的误差成反比。但是,自动驾驶汽车的先前合作传感器融合方法使用固定的误差模型,其中传感器的协方差及其识别器管道只是所有感应场景的测量协方差的平均值。本文提出的方法使用关键预测术语估算错误,这些术语与传感和定位精度具有很高的相关性,以准确地协方差估计每个传感器观察。我们采用一个分层融合模型,该模型由局部和全球传感器融合步骤组成。在局部融合水平上,我们使用每个传感器的误差模型和测量距离添加协方差生成阶段,以生成每个观察值的预期协方差矩阵。在全球传感器融合阶段,我们添加了一个额外的阶段,以从关键预测器项速度产生定位协方差矩阵,并将其与局部融合产生的协方差相结合,以准确地进行合作感应。为了展示我们的方法,我们构建了一组1/10比例模型自动驾驶汽车,具有准确的感应功能,并针对运动捕获系统对误差特性进行了分类。结果表明,当使用我们的误差模型与典型的固定误差模型时,在四车协作融合方案中分别检测到1.42倍和1.78倍的车辆位置时,RMSE的平均水平和最大改善。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
越来越多的交通部门的问题是事故,交通流量不良和污染。智能运输系统使用外部基础架构(其)可以解决这些问题。据我们所知,不存在对现有解决方案的系统审查。为了填补这一知识缺口,本文概述了现有的使用外部基础架构。此外,本文发现目前没有充分的回答的研究问题。出于这个原因,我们对文件进行了文献综述,它自2009年以来介绍了其解决方案。我们根据他的技术水平分类结果并分析了它们的性质。因此,我们使其有所可比性,并突出了过去的发展以及目前的趋势。根据提及的方法,我们分析了346多篇论文,其中包括40个试验床项目。总之,目前其可以实时提供有关交通情况下的个体的高准确信息。然而,在其使用现代传感器,即插即用机制以及高度数据的分散方式中,进一步研究其应重点关注对流量的更可靠的流量感知。通过解决这些主题,智能运输系统的开发处于校正方向,以实现全面推出。
translated by 谷歌翻译
合作的感知在将车辆的感知范围扩展到超出其视线之外至关重要。然而,在有限的通信资源下交换原始感官数据是不可行的。为了实现有效的合作感知,车辆需要解决以下基本问题:需要共享哪些感官数据?,在哪个分辨率?,以及哪个车辆?为了回答这个问题,在本文中,提出了一种新颖的框架来允许加强学习(RL)基于车辆关联,资源块(RB)分配和通过利用基于四叉的点的协作感知消息(CPM)的内容选择云压缩机制。此外,引入了联合的RL方法,以便在跨车辆上加速训练过程。仿真结果表明,RL代理能够有效地学习车辆关联,RB分配和消息内容选择,同时在接收的感官信息方面最大化车辆的满足。结果还表明,与非联邦方法相比,联邦RL改善了培训过程,可以在与非联邦方法相同的时间内实现更好的政策。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
随着自动驾驶的发展,单个车辆的自动驾驶技术的提高已达到瓶颈。车辆合作自动驾驶技术的进步可以扩大车辆的感知范围,补充感知盲区并提高感知的准确性,以促进自主驾驶技术的发展并实现车辆路整合。该项目主要使用LIDAR来开发数据融合方案,以实现车辆和道路设备数据的共享和组合,并实现动态目标的检测和跟踪。同时,设计和用于测试我们的车辆道路合作意识系统的一些测试方案,这证明了车辆道路合作自动驾驶在单车自动驾驶上的优势。
translated by 谷歌翻译
感知是自动驾驶系统的关键模块之一,最近取得了长足的进步。但是,单个车辆的能力有限,导致感知表现的瓶颈。为了突破个人感知的局限性,已经提出了协作感知,使车辆能够共享信息以了解超出视线和视野的环境。在本文中,我们对有关有前途的协作感知技术的相关工作进行了评论,包括介绍基本概念,推广协作模式并总结协作感知的关键成分和应用。最后,我们讨论了该研究领域的公开挑战和问题,并提供了一些潜在的方向。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
车辆到车辆(V2V)通信的性能在很大程度上取决于使用的调度方法。虽然集中式网络调度程序提供高V2V通信可靠性,但它们的操作通常仅限于具有完整的蜂窝网络覆盖范围的区域。相比之下,在细胞外覆盖区域中,使用了相对效率低下的分布式无线电资源管理。为了利用集中式方法的好处来增强V2V通信在缺乏蜂窝覆盖的道路上的可靠性,我们建议使用VRLS(车辆加固学习调度程序),这是一种集中的调度程序,该调度程序主动为覆盖外的V2V Communications主动分配资源,以前}车辆离开蜂窝网络覆盖范围。通过在模拟的车辆环境中进行培训,VRL可以学习一项适应环境变化的调度策略,从而消除了在复杂的现实生活环境中对有针对性(重新)培训的需求。我们评估了在不同的移动性,网络负载,无线通道和资源配置下VRL的性能。 VRL的表现优于最新的区域中最新分布式调度算法,而无需蜂窝网络覆盖,通过在高负载条件下将数据包错误率降低了一半,并在低负载方案中实现了接近最大的可靠性。
translated by 谷歌翻译
在本文中,我们使用单个摄像头和惯性测量单元(IMU)以及相应的感知共识问题(即,所有观察者的独特性和相同的ID)来解决基于视觉的检测和跟踪多个航空车的问题。我们设计了几种基于视觉的分散贝叶斯多跟踪滤波策略,以解决视觉探测器算法获得的传入的未分类测量与跟踪剂之间的关联。我们根据团队中代理的数量在不同的操作条件以及可扩展性中比较它们的准确性。该分析提供了有关给定任务最合适的设计选择的有用见解。我们进一步表明,提出的感知和推理管道包括深度神经网络(DNN),因为视觉目标检测器是轻量级的,并且能够同时运行控制和计划,并在船上进行大小,重量和功率(交换)约束机器人。实验结果表明,在各种具有挑战性的情况(例如重闭)中,有效跟踪了多个无人机。
translated by 谷歌翻译