尽管神经网络在计算机视觉任务中取得了成功,但数字“神经元”还是生物神经元的非常松散的近似。当今的学习方法旨在在具有数字数据表示(例如图像帧)的数字设备上运行。相比之下,生物视觉系统通常比最先进的数字计算机视觉算法更有能力和高效。事件摄像机是一种新兴的传感器技术,它以异步射击像素模仿生物学视觉,避免了图像框架的概念。为了利用现代学习技术,许多基于事件的算法被迫将事件累积回图像帧,在某种程度上浪费了事件摄像机的优势。我们遵循相反的范式,并开发一种新型的神经网络,该网络更接近原始事件数据流。我们证明了角速度回归和竞争性光流估计中的最新性能,同时避免了与训练SNN相关的困难。此外,我们所提出的方法的处理延迟小于1/10,而连续推断将这种改进增加了另一个数量级。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
基于事件的摄像机最近由于其不同步捕获时间丰富的信息的能力而显示出高速运动估计的巨大潜力。具有神经启发的事件驱动的处理的尖峰神经网络(SNN)可以有效地处理异步数据,而神经元模型(例如泄漏的综合和火灾(LIF))可以跟踪输入中包含的典型时序信息。 SNN通过在神经元内存中保持动态状态,保留重要信息,同时忘记冗余数据随着时间的推移而实现这一目标。因此,我们认为,与类似大小的模拟神经网络(ANN)相比,SNN将允许在顺序回归任务上更好地性能。但是,由于以后的层消失了,很难训练深SNN。为此,我们提出了一个具有可学习的神经元动力学的自适应完全刺激框架,以减轻尖峰消失的问题。我们在时间(BPTT)中利用基于替代梯度的反向传播来从头开始训练我们的深SNN。我们验证了在多车立体化事件相机(MVSEC)数据集和DSEC-FLOW数据集中的光流估计任务的方法。我们在这些数据集上的实验显示,与最新的ANN相比,平均终点误差(AEE)平均降低了13%。我们还探索了几个缩小的模型,并观察到我们的SNN模型始终超过大小的ANN,提供10%-16%的AEE。这些结果证明了SNN对较小模型的重要性及其在边缘的适用性。在效率方面,与最先进的ANN实施相比,我们的SNN可节省大量的网络参数(48倍)和计算能(51倍),同时获得了〜10%的EPE。
translated by 谷歌翻译
深度估计是一个重要的计算机视觉任务,特别是用于自主车辆中的导航,或者在机器人中的对象操纵。在这里,我们使用端到端的神经形态方法解决了它,将两个事件的相机和尖峰神经网络(SNN)与略微修改的U-Net的编码器 - 解码器架构结合起来,我们命名为Sterepike。更具体地说,我们使用了多车辆立体声事件相机数据集(MVSEC)。它提供了深度地面真理,用于使用替代梯度下降以监督方式训练立体摩托车。我们提出了一种新颖的读数范式来获得密集的模拟预测 - 从解码器的尖峰中获得每个像素的深度。我们证明,这种体系结构概括得非常好,甚至比其非尖峰对应物更好,导致最先进的测试精度。据我们所知,这是第一次通过完全尖峰网络解决了这样一个大规模的回归问题。最后,我们表明,可以通过规范化获得低发射速率(<10%),精度最低的成本。这意味着可以在神经芯片上有效地实现Sterepositike,用于为低功率和实时嵌入式系统开门。
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译
Although synthetic aperture imaging (SAI) can achieve the seeing-through effect by blurring out off-focus foreground occlusions while recovering in-focus occluded scenes from multi-view images, its performance is often deteriorated by dense occlusions and extreme lighting conditions. To address the problem, this paper presents an Event-based SAI (E-SAI) method by relying on the asynchronous events with extremely low latency and high dynamic range acquired by an event camera. Specifically, the collected events are first refocused by a Refocus-Net module to align in-focus events while scattering out off-focus ones. Following that, a hybrid network composed of spiking neural networks (SNNs) and convolutional neural networks (CNNs) is proposed to encode the spatio-temporal information from the refocused events and reconstruct a visual image of the occluded targets. Extensive experiments demonstrate that our proposed E-SAI method can achieve remarkable performance in dealing with very dense occlusions and extreme lighting conditions and produce high-quality images from pure events. Codes and datasets are available at https://dvs-whu.cn/projects/esai/.
translated by 谷歌翻译
基于事件的视觉传感器在事件流中编码本地像素方面的亮度变化,而不是图像帧,并且除了低延迟,高动态范围和缺乏运动模糊之外,还产生稀疏,节能编码。基于事件的传感器的对象识别的最新进展来自深度神经网络的转换,培训背部经历。但是,使用这些事件流的方法需要转换到同步范式,这不仅失去了计算效率,而且还会错过提取时空特征的机会。在本文中,我们提出了一种用于基于事件的模式识别和对象检测的深度神经网络的端到端培训的混合架构,将尖刺神经网络(SNN)骨干组合用于高效的基于事件的特征提取,以及随后的模拟神经网络(ANN)头解决同步分类和检测任务。这是通过将标准的梯度训练与替代梯度训练相结合来实现这一点来实现,以通过SNN传播梯度。可以在不转换的情况下培训混合SNN-ANN,并且导致高度准确的网络,这些网络比其ANN对应物大得多。我们演示了基于事件的分类和对象检测数据集的结果,其中只需要将ANN头的体系结构适应任务,并且不需要基于事件的输入的转换。由于ANNS和SNNS需要不同的硬件范式来最大限度地提高其效率,因此设想SNN骨干网和ANN头可以在不同的处理单元上执行,从而分析在两部分之间进行通信的必要带宽。混合网络是有前途的架构,以进一步推进基于事件的愿景的机器学习方法,而不必妥协效率。
translated by 谷歌翻译
避免障碍的广泛范围导致了许多基于计算机视觉的方法。尽管受欢迎,但这不是一个解决问题。使用相机和深度传感器的传统计算机视觉技术通常专注于静态场景,或依赖于障碍物的前沿。生物启发传感器的最新发展将事件相机作为动态场景的引人注目的选择。尽管这些传感器的基于帧的对应物具有许多优点,但是高动态范围和时间分辨率,因此基于事件的感知在很大程度上存在于2D中。这通常导致解决方案依赖于启发式和特定于特定任务。我们表明,在执行障碍物避免时,事件和深度的融合克服了每个单独的模型的故障情况。我们所提出的方法统一事件摄像机和LIDAR流,以估计未经现场几何或障碍物的先验知识的度量对抗。此外,我们还发布了一个基于事件的基于事件的数据集,具有超过700个扫描场景的六个可视流。
translated by 谷歌翻译
从大脑的事件驱动和稀疏的尖峰特征中受益,尖峰神经网络(SNN)已成为人工神经网络(ANN)的一种节能替代品。但是,SNNS和ANN之间的性能差距很长一段时间以来一直在延伸SNNS。为了利用SNN的全部潜力,我们研究了SNN中注意机制的影响。我们首先使用插件套件提出了我们的注意力,称为多维关注(MA)。然后,提出了一种新的注意力SNN体系结构,并提出了端到端训练,称为“ ma-snn”,该体系结构分别或同时或同时延伸了沿时间,通道以及空间维度的注意力重量。基于现有的神经科学理论,我们利用注意力重量来优化膜电位,进而以数据依赖性方式调节尖峰响应。 MA以可忽略的其他参数为代价,促进了香草SNN,以实现更稀疏的尖峰活动,更好的性能和能源效率。实验是在基于事件的DVS128手势/步态动作识别和Imagenet-1K图像分类中进行的。在手势/步态上,尖峰计数减少了84.9%/81.6%,任务准确性和能源效率提高了5.9%/4.7%和3.4 $ \ times $/3.2 $ \ times $。在ImagEnet-1K上,我们在单个/4步res-SNN-104上获得了75.92%和77.08%的TOP-1精度,这是SNN的最新结果。据我们所知,这是SNN社区与大规模数据集中的ANN相比,SNN社区取得了可比甚至更好的性能。我们的工作阐明了SNN作为支持SNN的各种应用程序的一般骨干的潜力,在有效性和效率之间取得了巨大平衡。
translated by 谷歌翻译
超低功耗本地信号处理是始终安装在设备上的边缘应用的关键方面。尖刺神经网络的神经形态处理器显示出很大的计算能力,同时根据该领域的需要满足有限的电力预算。在这项工作中,我们提出了尖峰神经动力学作为扩张时间卷积的自然替代品。我们将这个想法扩展到WaveSense,这是一个由Wavenet Architects的激发灵感的尖峰神经网络。WaveSense使用简单的神经动力学,固定时间常数和简单的前馈结构,因此特别适用于神经形态实现。我们在几个数据集中测试此模型的功能,以用于关键字斑点。结果表明,该网络击败了其他尖刺神经网络的领域,并达到了诸如CNN和LSTM的人工神经网络的最先进的性能。
translated by 谷歌翻译
事件摄像机可产生大型动态范围事件流,并具有很高的时间分辨率,可丢弃冗余视觉信息,从而为对象检测任务带来新的可能性。但是,将事件摄像机应用于使用深度学习方法对象检测任务的现有方法仍然存在许多问题。首先,由于全局同步时间窗口和时间分辨率,现有方法无法考虑具有不同速度的对象。其次,大多数现有方法都依赖于大型参数神经网络,这意味着较大的计算负担和低推理速度,因此与事件流的高时间分辨率相反。在我们的工作中,我们设计了一种使用简单但有效的数据增强方法的高速轻质检测器,称为敏捷事件检测器(AED)。此外,我们提出了一个称为“时间主动焦点(TAF)”的事件流表示张量,该量子充分利用了事件流数据的异步生成,并且对移动对象的运动非常强大。它也可以在不耗时的情况下构造。我们进一步提出了一个称为分叉折叠模块(BFM)的模块,以在AED检测器的输入层的TAF张量中提取丰富的时间信息。我们对两个典型的实体事件摄像机对象检测数据集进行了实验:完整的预言GEN1汽车检测数据集和预言1 Megapixel Automotive检测数据集,带有部分注释。实验表明,我们的方法在准确性,速度和参数数量方面具有竞争力。同样,通过基于光流密度度量的对象将对象分类为多个运动级别,我们说明了相对于摄像机具有不同速度的对象的方法的鲁棒性。
translated by 谷歌翻译
尖峰神经网络(SNNS)模仿大脑计算策略,并在时空信息处理中表现出很大的功能。作为人类感知的基本因素,视觉关注是指生物视觉系统中显着区域的动态选择过程。尽管视觉注意力的机制在计算机视觉上取得了巨大成功,但很少会引入SNN中。受到预测注意重新映射的实验观察的启发,我们在这里提出了一种新的时空通道拟合注意力(SCTFA)模块,该模块可以通过使用历史积累的空间通道信息来指导SNN有效地捕获潜在的目标区域。通过在三个事件流数据集(DVS手势,SL-Animals-DVS和MNIST-DVS)上进行系统评估,我们证明了带有SCTFA模块(SCTFA-SNN)的SNN不仅显着超过了基线SNN(BL-SNN)(BL-SNN)(BL-SNN)以及其他两个具有退化注意力模块的SNN模型,但也通过现有最新方法实现了竞争精度。此外,我们的详细分析表明,所提出的SCTFA-SNN模型对噪声和出色的稳定性具有强大的稳健性,同时保持了可接受的复杂性和效率。总体而言,这些发现表明,适当纳入大脑的认知机制可能会提供一种有希望的方法来提高SNN的能力。
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
作为具有高时间分辨率的生物启发传感器,尖峰摄像机在真实应用中具有巨大的潜力,特别是在高速场景中的运动估计。然而,由于数据模式不同,基于帧的基于事件的方法并不适合从尖峰相机的尖峰流。为此,我们展示,Scflow,一种量身定制的深度学习管道,以估计来自尖峰流的高速场景中的光学流量。重要的是,引入了一种新的输入表示,其可以根据先前运动自适应地从尖峰流中自适应地移除运动模糊。此外,对于训练Scflow,我们为Spiking Camera的两组光学流量数据合成了两组光学流量数据,尖锐的东西和光处理的高速运动,分别表示为乘坐和PHM,对应于随机的高速和精心设计的场景。实验结果表明,SC流程可以预测不同高速场景中的尖峰流的光流。此外,Scflow显示了\真正的尖峰流的有希望的泛化。发布后,所有代码和构造数据集将发布。
translated by 谷歌翻译
基于事件的视觉传感器基于视觉场景的变化产生具有高时间分辨率的异步事件流。随着事件的生成,这些传感器的特性允许精确快速地计算光学流量。对于从事件数据计算光学流的现有解决方案未能由于孔径问题而无法捕获真正的运动方向,请勿使用传感器的高时间分辨率,或者在嵌入式平台上实时运行太昂贵。在这项研究中,我们首先提供了我们之前的算法,武器(光圈稳健的多尺度流)的更快版本。新的优化软件版本(农场)显着提高了传统CPU的吞吐量。此外,我们呈现危害,一种农场算法的硬件实现,允许实时计算低功耗,嵌入式平台上的真实流量。建议的危害架构针对混合系统的片上器件,旨在最大限度地提高可配置性和吞吐量。硬件架构和农场算法是用异步的神经形态处理而开发的,放弃了事件帧的常用使用,而是仅使用不同事件的小历史运行,允许独立于传感器分辨率进行缩放。与现有方法相比,处理范例的这种变化将流量方向的估计变为高达73%,并在选择的基准配置上显示出危害最高为1.21 Mevent / s的危害。此吞吐量使实时性能能够实现迄今为止迄今为止最快速的基于活动的事件的光流的实现。
translated by 谷歌翻译
Tactile sensing is essential for a variety of daily tasks. And recent advances in event-driven tactile sensors and Spiking Neural Networks (SNNs) spur the research in related fields. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representation abilities of existing spiking neurons and high spatio-temporal complexity in the event-driven tactile data. In this paper, to improve the representation capability of existing spiking neurons, we propose a novel neuron model called "location spiking neuron", which enables us to extract features of event-based data in a novel way. Specifically, based on the classical Time Spike Response Model (TSRM), we develop the Location Spike Response Model (LSRM). In addition, based on the most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the representation effectiveness of our proposed neurons and capture the complex spatio-temporal dependencies in the event-driven tactile data, we exploit the location spiking neurons to propose two hybrid models for event-driven tactile learning. Specifically, the first hybrid model combines a fully-connected SNN with TSRM neurons and a fully-connected SNN with LSRM neurons. And the second hybrid model fuses the spatial spiking graph neural network with TLIF neurons and the temporal spiking graph neural network with LLIF neurons. Extensive experiments demonstrate the significant improvements of our models over the state-of-the-art methods on event-driven tactile learning. Moreover, compared to the counterpart artificial neural networks (ANNs), our SNN models are 10x to 100x energy-efficient, which shows the superior energy efficiency of our models and may bring new opportunities to the spike-based learning community and neuromorphic engineering.
translated by 谷歌翻译
用于神经形态计算的生物学启发的尖峰神经元是具有动态状态变量的非线性滤波器 - 与深度学习中使用的无状态神经元模型非常不同。 Notel Intel的神经形态研究处理器Loihi 2的下一个版本支持各种具有完全可编程动态的最有状态尖峰神经元模型。在这里,我们展示了先进的尖峰神经元模型,可用于有效地处理仿真Loihi 2硬件的仿真实验中的流数据。在一个示例中,共振和火(RF)神经元用于计算短时间傅里叶变换(STFT),其具有类似的计算复杂度,但是输出带宽的47倍而不是传统的STFT。在另一个例子中,我们描述了一种使用时间率RF神经元的光学流量估计算法,其需要比传统的基于DNN的解决方案超过90倍。我们还展示了有前途的初步结果,使用BackPropagation培训RF神经元进行音频分类任务。最后,我们表明,跳跃的血管谐振器 - RF神经元的变体 - 重复耳蜗的新特性,并激励一种有效的基于尖峰的谱图编码器。
translated by 谷歌翻译
事件摄像机捕获观察到的场景中的照明的变化,而不是累积光以创建图像。因此,它们允许在高速运动和复杂的照明条件下的应用,其中传统的框架传感器显示它们的模糊和过度或未出现的像素的限制。由于这些独特的属性,它们表示现在是与其相关的应用的高度有吸引力的传感器。在这些神经形式相机的普及升高之后,已经研究了基于事件的光流(EBOF)。然而,最近的高清神经晶体传感器的到来挑战现有方法,因为事件像素阵列的分辨率增加和更高的吞吐量。作为这些点的答案,我们提出了一种用于实时计算光流的优化框架,以及低分辨率的事件摄像机。我们以“逆指数距离表面”的形式为稀疏事件流制定了一种新的密集表示。它用作临时框架,专为使用证明,最先进的基于框架的光流量计算方法而设计。我们评估我们在低分辨率和高分辨率驾驶序列上的方法,并表明它通常比当前现有技术更好地实现更好的结果,同时也达到更高的帧速率,250Hz在346 x 260像素和77Hz在1280 x 720像素。
translated by 谷歌翻译
Sparse representation has attracted great attention because it can greatly save storage re- sources and find representative features of data in a low-dimensional space. As a result, it may be widely applied in engineering domains including feature extraction, compressed sensing, signal denoising, picture clustering, and dictionary learning, just to name a few. In this paper, we propose a spiking sampling network. This network is composed of spiking neurons, and it can dynamically decide which pixel points should be retained and which ones need to be masked according to the input. Our experiments demonstrate that this approach enables better sparse representation of the original image and facilitates image reconstruction compared to random sampling. We thus use this approach for compressing massive data from the dynamic vision sensor, which greatly reduces the storage requirements for event data.
translated by 谷歌翻译