深度估计是一个重要的计算机视觉任务,特别是用于自主车辆中的导航,或者在机器人中的对象操纵。在这里,我们使用端到端的神经形态方法解决了它,将两个事件的相机和尖峰神经网络(SNN)与略微修改的U-Net的编码器 - 解码器架构结合起来,我们命名为Sterepike。更具体地说,我们使用了多车辆立体声事件相机数据集(MVSEC)。它提供了深度地面真理,用于使用替代梯度下降以监督方式训练立体摩托车。我们提出了一种新颖的读数范式来获得密集的模拟预测 - 从解码器的尖峰中获得每个像素的深度。我们证明,这种体系结构概括得非常好,甚至比其非尖峰对应物更好,导致最先进的测试精度。据我们所知,这是第一次通过完全尖峰网络解决了这样一个大规模的回归问题。最后,我们表明,可以通过规范化获得低发射速率(<10%),精度最低的成本。这意味着可以在神经芯片上有效地实现Sterepositike,用于为低功率和实时嵌入式系统开门。
translated by 谷歌翻译
基于事件的摄像机最近由于其不同步捕获时间丰富的信息的能力而显示出高速运动估计的巨大潜力。具有神经启发的事件驱动的处理的尖峰神经网络(SNN)可以有效地处理异步数据,而神经元模型(例如泄漏的综合和火灾(LIF))可以跟踪输入中包含的典型时序信息。 SNN通过在神经元内存中保持动态状态,保留重要信息,同时忘记冗余数据随着时间的推移而实现这一目标。因此,我们认为,与类似大小的模拟神经网络(ANN)相比,SNN将允许在顺序回归任务上更好地性能。但是,由于以后的层消失了,很难训练深SNN。为此,我们提出了一个具有可学习的神经元动力学的自适应完全刺激框架,以减轻尖峰消失的问题。我们在时间(BPTT)中利用基于替代梯度的反向传播来从头开始训练我们的深SNN。我们验证了在多车立体化事件相机(MVSEC)数据集和DSEC-FLOW数据集中的光流估计任务的方法。我们在这些数据集上的实验显示,与最新的ANN相比,平均终点误差(AEE)平均降低了13%。我们还探索了几个缩小的模型,并观察到我们的SNN模型始终超过大小的ANN,提供10%-16%的AEE。这些结果证明了SNN对较小模型的重要性及其在边缘的适用性。在效率方面,与最先进的ANN实施相比,我们的SNN可节省大量的网络参数(48倍)和计算能(51倍),同时获得了〜10%的EPE。
translated by 谷歌翻译
尽管神经网络在计算机视觉任务中取得了成功,但数字“神经元”还是生物神经元的非常松散的近似。当今的学习方法旨在在具有数字数据表示(例如图像帧)的数字设备上运行。相比之下,生物视觉系统通常比最先进的数字计算机视觉算法更有能力和高效。事件摄像机是一种新兴的传感器技术,它以异步射击像素模仿生物学视觉,避免了图像框架的概念。为了利用现代学习技术,许多基于事件的算法被迫将事件累积回图像帧,在某种程度上浪费了事件摄像机的优势。我们遵循相反的范式,并开发一种新型的神经网络,该网络更接近原始事件数据流。我们证明了角速度回归和竞争性光流估计中的最新性能,同时避免了与训练SNN相关的困难。此外,我们所提出的方法的处理延迟小于1/10,而连续推断将这种改进增加了另一个数量级。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译
基于事件的视觉传感器在事件流中编码本地像素方面的亮度变化,而不是图像帧,并且除了低延迟,高动态范围和缺乏运动模糊之外,还产生稀疏,节能编码。基于事件的传感器的对象识别的最新进展来自深度神经网络的转换,培训背部经历。但是,使用这些事件流的方法需要转换到同步范式,这不仅失去了计算效率,而且还会错过提取时空特征的机会。在本文中,我们提出了一种用于基于事件的模式识别和对象检测的深度神经网络的端到端培训的混合架构,将尖刺神经网络(SNN)骨干组合用于高效的基于事件的特征提取,以及随后的模拟神经网络(ANN)头解决同步分类和检测任务。这是通过将标准的梯度训练与替代梯度训练相结合来实现这一点来实现,以通过SNN传播梯度。可以在不转换的情况下培训混合SNN-ANN,并且导致高度准确的网络,这些网络比其ANN对应物大得多。我们演示了基于事件的分类和对象检测数据集的结果,其中只需要将ANN头的体系结构适应任务,并且不需要基于事件的输入的转换。由于ANNS和SNNS需要不同的硬件范式来最大限度地提高其效率,因此设想SNN骨干网和ANN头可以在不同的处理单元上执行,从而分析在两部分之间进行通信的必要带宽。混合网络是有前途的架构,以进一步推进基于事件的愿景的机器学习方法,而不必妥协效率。
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
尖峰神经网络已显示出具有人工神经网络的节能替代品。但是,对于常见的神经形态视觉基准(如分类),了解传感器噪声和输入编码对网络活动和性能的影响仍然很困难。因此,我们提出了一种使用替代梯度下降训练的单个对象定位的尖峰神经网络方法,用于基于框架和事件的传感器。我们将我们的方法与类似的人工神经网络进行比较,并表明我们的模型在准确性,对各种腐败的鲁棒性方面具有竞争力/更好的性能,并且能耗较低。此外,我们研究了神经编码方案对准确性,鲁棒性和能源效率的静态图像的影响。我们的观察结果与以前关于生物成分学习规则的研究重要差​​异,该规则有助于设计替代梯度训练的体系结构,并就噪声特征和数据编码方法方面的未来神经形态技术设计优先级。
translated by 谷歌翻译
从大脑的事件驱动和稀疏的尖峰特征中受益,尖峰神经网络(SNN)已成为人工神经网络(ANN)的一种节能替代品。但是,SNNS和ANN之间的性能差距很长一段时间以来一直在延伸SNNS。为了利用SNN的全部潜力,我们研究了SNN中注意机制的影响。我们首先使用插件套件提出了我们的注意力,称为多维关注(MA)。然后,提出了一种新的注意力SNN体系结构,并提出了端到端训练,称为“ ma-snn”,该体系结构分别或同时或同时延伸了沿时间,通道以及空间维度的注意力重量。基于现有的神经科学理论,我们利用注意力重量来优化膜电位,进而以数据依赖性方式调节尖峰响应。 MA以可忽略的其他参数为代价,促进了香草SNN,以实现更稀疏的尖峰活动,更好的性能和能源效率。实验是在基于事件的DVS128手势/步态动作识别和Imagenet-1K图像分类中进行的。在手势/步态上,尖峰计数减少了84.9%/81.6%,任务准确性和能源效率提高了5.9%/4.7%和3.4 $ \ times $/3.2 $ \ times $。在ImagEnet-1K上,我们在单个/4步res-SNN-104上获得了75.92%和77.08%的TOP-1精度,这是SNN的最新结果。据我们所知,这是SNN社区与大规模数据集中的ANN相比,SNN社区取得了可比甚至更好的性能。我们的工作阐明了SNN作为支持SNN的各种应用程序的一般骨干的潜力,在有效性和效率之间取得了巨大平衡。
translated by 谷歌翻译
深度估计对于各种重要的现实世界应用至关重要,例如自动驾驶。但是,在高速场景中,它遭受了严重的性能退化,因为传统相机只能捕获模糊的图像。为了解决这个问题,Spike摄像头旨在以高框架速率捕获像素的亮度强度。但是,使用传统的单眼或立体声深度估计算法,使用尖峰摄像机的深度估计仍然非常具有挑战性,这些算法基于光度一致性。在本文中,我们提出了一种新型的不确定性引导深度融合(UGDF)框架,以融合Spike摄像机的单眼和立体声深度估计网络的预测。我们的框架是由于立体声尖峰深度估计在近距离取得更好的结果,而单眼尖峰深度估计获得了更好的结果。因此,我们引入了具有联合培训策略的双任务深度估计结构,并估算了分布式不确定性以融合单眼和立体声结果。为了证明尖峰深度估计比传统的摄像头深度估计的优势,我们为一个名为CitySpike20k的尖峰深度数据集,其中包含20k配对的样品,以进行尖峰深度估计。 UGDF在CitySpike20k上取得了最新的结果,超过了所有单眼或立体声尖峰深度估计基线。我们进行了广泛的实验,以评估我们方法对CitySpike20k的有效性和概括。据我们所知,我们的框架是第一个用于尖峰摄像头深度估算的双任务融合框架。代码和数据集将发布。
translated by 谷歌翻译
由于它们的低能量消耗,对神经形态计算设备上的尖刺神经网络(SNNS)越来越兴趣。最近的进展使培训SNNS在精度方面开始与传统人工神经网络(ANNS)进行竞争,同时在神经胸壁上运行时的节能。然而,培训SNNS的过程仍然基于最初为ANNS开发的密集的张量操作,这不利用SNN的时空稀疏性质。我们在这里介绍第一稀疏SNN BackPropagation算法,该算法与最新的现有技术实现相同或更好的准确性,同时显着更快,更高的记忆力。我们展示了我们对不同复杂性(时尚 - MNIST,神经影像学 - MNIST和Spiking Heidelberg数字的真实数据集的有效性,在不失精度的情况下实现了高达150倍的后向通行证的加速,而不会减少精度。
translated by 谷歌翻译
尖峰神经网络(SNN)是大脑中低功率,耐断层的信息处理的基础,并且在适当的神经形态硬件加速器上实施时,可能构成传统深层神经网络的能力替代品。但是,实例化解决复杂的计算任务的SNN在Silico中仍然是一个重大挑战。替代梯度(SG)技术已成为培训SNN端到端的标准解决方案。尽管如此,它们的成功取决于突触重量初始化,类似于常规的人工神经网络(ANN)。然而,与ANN不同,它仍然难以捉摸地构成SNN的良好初始状态。在这里,我们为受到大脑中通常观察到的波动驱动的策略启发的SNN制定了一般初始化策略。具体而言,我们为数据依赖性权重初始化提供了实用的解决方案,以确保广泛使用的泄漏的集成和传火(LIF)神经元的波动驱动。我们从经验上表明,经过SGS培训时,SNN遵循我们的策略表现出卓越的学习表现。这些发现概括了几个数据集和SNN体系结构,包括完全连接,深度卷积,经常性和更具生物学上合理的SNN遵守Dale的定律。因此,波动驱动的初始化提供了一种实用,多功能且易于实现的策略,可改善神经形态工程和计算神经科学的不同任务的SNN培训绩效。
translated by 谷歌翻译
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency. Particularly, backpropagation through time (BPTT) with surrogate gradients (SG) is popularly used to achieve high performance in a very small number of time steps. However, it is at the cost of large memory consumption for training, lack of theoretical clarity for optimization, and inconsistency with the online property of biological learning and rules on neuromorphic hardware. Other works connect spike representations of SNNs with equivalent artificial neural network formulation and train SNNs by gradients from equivalent mappings to ensure descent directions. But they fail to achieve low latency and are also not online. In this work, we propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning by tracking presynaptic activities and leveraging instantaneous loss and gradients. Meanwhile, we theoretically analyze and prove that gradients of OTTT can provide a similar descent direction for optimization as gradients based on spike representations under both feedforward and recurrent conditions. OTTT only requires constant training memory costs agnostic to time steps, avoiding the significant memory costs of BPTT for GPU training. Furthermore, the update rule of OTTT is in the form of three-factor Hebbian learning, which could pave a path for online on-chip learning. With OTTT, it is the first time that two mainstream supervised SNN training methods, BPTT with SG and spike representation-based training, are connected, and meanwhile in a biologically plausible form. Experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS demonstrate the superior performance of our method on large-scale static and neuromorphic datasets in small time steps.
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
Although synthetic aperture imaging (SAI) can achieve the seeing-through effect by blurring out off-focus foreground occlusions while recovering in-focus occluded scenes from multi-view images, its performance is often deteriorated by dense occlusions and extreme lighting conditions. To address the problem, this paper presents an Event-based SAI (E-SAI) method by relying on the asynchronous events with extremely low latency and high dynamic range acquired by an event camera. Specifically, the collected events are first refocused by a Refocus-Net module to align in-focus events while scattering out off-focus ones. Following that, a hybrid network composed of spiking neural networks (SNNs) and convolutional neural networks (CNNs) is proposed to encode the spatio-temporal information from the refocused events and reconstruct a visual image of the occluded targets. Extensive experiments demonstrate that our proposed E-SAI method can achieve remarkable performance in dealing with very dense occlusions and extreme lighting conditions and produce high-quality images from pure events. Codes and datasets are available at https://dvs-whu.cn/projects/esai/.
translated by 谷歌翻译
超低功耗本地信号处理是始终安装在设备上的边缘应用的关键方面。尖刺神经网络的神经形态处理器显示出很大的计算能力,同时根据该领域的需要满足有限的电力预算。在这项工作中,我们提出了尖峰神经动力学作为扩张时间卷积的自然替代品。我们将这个想法扩展到WaveSense,这是一个由Wavenet Architects的激发灵感的尖峰神经网络。WaveSense使用简单的神经动力学,固定时间常数和简单的前馈结构,因此特别适用于神经形态实现。我们在几个数据集中测试此模型的功能,以用于关键字斑点。结果表明,该网络击败了其他尖刺神经网络的领域,并达到了诸如CNN和LSTM的人工神经网络的最先进的性能。
translated by 谷歌翻译
我们提出了Memprop,即采用基于梯度的学习来培训完全的申请尖峰神经网络(MSNNS)。我们的方法利用固有的设备动力学来触发自然产生的电压尖峰。这些由回忆动力学发出的尖峰本质上是类似物,因此完全可区分,这消除了尖峰神经网络(SNN)文献中普遍存在的替代梯度方法的需求。回忆性神经网络通常将备忘录集成为映射离线培训网络的突触,或者以其他方式依靠关联学习机制来训练候选神经元的网络。相反,我们直接在循环神经元和突触的模拟香料模型上应用了通过时间(BPTT)训练算法的反向传播。我们的实现是完全的综合性,因为突触重量和尖峰神经元都集成在电阻RAM(RRAM)阵列上,而无需其他电路来实现尖峰动态,例如模数转换器(ADCS)或阈值比较器。结果,高阶电物理效应被充分利用,以在运行时使用磁性神经元的状态驱动动力学。通过朝着非同一梯度的学习迈进,我们在以前报道的几个基准上的轻巧密集的完全MSNN中获得了高度竞争的准确性。
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
尽管神经形态计算的快速进展,但尖刺神经网络(SNNS)的能力不足和不足的表现力严重限制了其在实践中的应用范围。剩余学习和捷径被证明是培训深层神经网络的重要方法,但以前的工作评估了他们对基于尖峰的通信和时空动力学的特征的适用性。在本文中,我们首先确定这种疏忽导致受阻信息流程和伴随以前的残留SNN中的降解问题。然后,我们提出了一种新型的SNN定向的残余块MS-Reset,能够显着地扩展直接训练的SNN的深度,例如,在ImageNet上最多可在CiFar-10和104层上完成482层,而不会观察到任何轻微的降级问题。我们验证了基于帧和神经形态数据集的MS-Reset的有效性,并且MS-Resnet104在直接训练的SNN的域中的第一次实现了在ImageNet上的76.02%精度的优越结果。还观察到巨大的能量效率,平均仅需要每根神经元的一穗来分类输入样本。我们相信我们强大且可扩展的型号将为进一步探索SNN提供强大的支持。
translated by 谷歌翻译