这封信提出了一个系统的模块化过程,用于组成几个子系统的分支机器人的动态建模,每个系统由多个刚体组成。此外,即使某些子系统被视为黑匣子,提出的策略也适用,仅需要在不同子系统之间的连接点上的曲折和扳手。为了帮助模型组成,我们还提出了一个图表表示,该图表编码子系统之间的曲折和扳手的传播。数值结果表明,所提出的形式主义与用于机器人动力学建模的最新库一样准确。
translated by 谷歌翻译
空中操纵器(AM)表现出特别具有挑战性的非线性动力学;无人机和操纵器携带的是一个紧密耦合的动态系统,相互影响。描述这些动力学的数学模型构成了非线性控制和深度强化学习中许多解决方案的核心。传统上,动力学的配方涉及在拉格朗日框架中的欧拉角参数化或牛顿 - 欧拉框架中的四元素参数化。前者的缺点是诞生奇异性,而后者在算法上是复杂的。这项工作提出了一个混合解决方案,结合了两者的好处,即利用拉格朗日框架的四元化方法,将无奇异参数化与拉格朗日方法的算法简单性联系起来。我们通过提供有关运动学建模过程的详细见解以及一般空中操纵器动力学的表述。获得的动力学模型对实时物理引擎进行了实验验证。获得的动力学模型的实际应用显示在计算的扭矩反馈控制器(反馈线性化)的上下文中,我们通过日益复杂的模型分析其实时功能。
translated by 谷歌翻译
对许多基于模型的机器人控制算法的基本需求是能够快速准确地计算运动方程的部分衍生物。本领域的状态对此问题的方法通常使用基于应用于现有动态算法的链规则的分析方法。虽然这些方法是在准确性方面的有限差异的改善,但它们并不总是最有效的。在本文中,我们为逆动力学的一阶部分衍生物提供了新的封闭表达,导致递归算法。该算法采用FORTRAN中的链规则和来自C ++中的Pinocchio库的现有算法基准测试。考虑考虑计算从运动链到人域和四曲程的机器人的逆向和前向动态的部分衍生物。与先前的开源Pinocchio实施相比,我们的新分析结果揭示了能够获得效率的关键计算重组。据报道,高达1.4倍的加速度计算50-DOF Talos人藤的逆动力学的部分衍生物。
translated by 谷歌翻译
基于优化的机器人控制策略通常依赖于ILQR中的一阶动力学近似方法。由于动力学的二阶部分导数相对于状态和控制,因此使用动力学的二阶近似值是昂贵的。计算这些衍生物的当前方法通常使用自动分化(AD)和链规累积或有限差异。在本文中,我们首次提出了针对具有浮动碱基和多道路接头的开放链刚体系统的二阶部分衍生物的分析表达式。提出了可以进行分析的空间矢量代数的新扩展。还提供了$ \ Mathcal {O}(nd^2)$复杂性的递归算法,而$ n $是物体的数量,而$ d $是运动树的深度。与Casadi中的广告的比较显示,具有$ N> 5 $的串行运动树的速度为1.5-3 $ \ times $,而C ++实现显示了$ \ $ \ $ \ $ 51 $ \ mu \ mu s $的运行时间。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
近二十年来,软机器人技术一直是机器人社区中的一个热门话题。但是,对于软机器人进行建模和分析的可用工具仍然有限。本文介绍了一个用户友好的MATLAB工具箱Soft Robot Simulator(Sorosim),该工具集合了Cosserat杆的几何变量应变(GVS)模型,以促进对软,刚性或混合机器人系统的静态和动力分析。我们简要概述了工具箱的设计和结构,并通过将其结果与文献中发布的结果进行比较。为了突出该工具箱有效建模,模拟,优化和控制各种机器人系统的潜力,我们演示了四个示例应用程序。所示的应用探索了单,分支,开放式和闭合链机器人系统的不同执行器和外部加载条件。我们认为,软机器人研究社区将从Sorosim工具箱中大大受益,用于多种应用。
translated by 谷歌翻译
本文提出了一种具有平行$ - $串行结构的重型操纵器的新颖建模方法。每次考虑并行$ - $串行结构包含一个旋转段,其具有由无源旋转接头连接的刚性连杆,并由线性液压致动器致动,从而形成闭合的运动回路。另外,也考虑由由液压线性致动器驱动的棱柱接头组成的棱柱形段。执行器力的表达式使用Newton $ - $ euler(n $ - $ e)动态制定。推导过程不假设从操纵器链路解耦的无麻麻空致动器,这在拉格朗日动力学制剂中是常见的。致动器压力动力学包括在分析中,总共引进到普通微分方程(ODES)的三阶系统。在N $ - $ E框架中提出的模型,比其前身更少的参数,激发了虚拟分解控制(VDC)系统过程的修订,以制定基于新模型的控制法。获得每个通用机械手旋转和棱柱形段的虚拟稳定性,导致整个机器人的Lyapunov稳定性。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
This is a follow-up tutorial article of our previous article entitled "Robot Basics: Representation, Rotation and Velocity". For better understanding of the topics covered in this articles, we recommend the readers to first read our previous tutorial article on robot basics. Specifically, in this article, we will cover some more advanced topics on robot kinematics, including robot motion, forward kinematics, inverse kinematics, and robot dynamics. For the topics, terminologies and notations introduced in the previous article, we will use them directly without re-introducing them again in this article. Also similar to the previous article, math and formulas will also be heavily used in this article as well (hope the readers are well prepared for the upcoming math bomb). After reading this article, readers should be able to have a deeper understanding about how robot motion, kinematics and dynamics. As to some more advanced topics about robot control, we will introduce them in the following tutorial articles for readers instead.
translated by 谷歌翻译
使用模块化和可重新配置性方面的操纵器配置的自定义是受到大量关注的。到目前为止展示了常规和标准配置的模块。本文介绍了3D可打印,轻量级和非传统模块:Moirs'Mark-2,即使具有非平行和非垂直的连接配置,也可以开发任何自定义`的自由度(DOF)串行机械手。模块化配置的这些非常规设计为模块化组件和软件界面寻求易于适应的解决方案,用于自动建模和控制。使用所提出的4个模块单元,在本文中提出了组装模块,模块化和可重新配置机械手的模块和可重新配置机械手的模块,自动和统一建模。提供可重新配置的软件架构,用于自动生成运动和动态模型和配置文件,通过该设计文件,设计器可以根据需要设计,使用可视化,计划和执行开发配置的运动。开发的框架基于一个称为机器人操作系统(ROS)的开源平台,其充当模块化配置的数字双胞胎。对于实验演示,开发了一个3D印刷模块化库,并使用所提出的模块随后进行了非传统配置,用于自动建模和控制,用于垂直农场设置的单个单元格。
translated by 谷歌翻译
运动结构在现实世界中非常普遍。它们范围从简单的铰接物对象到复杂的机械系统。但是,尽管它们相关,但大多数基于模型的3D跟踪方法仅考虑刚性对象。为了克服这一限制,我们提出了一个灵活的框架,该框架允许将现有的6DOF算法扩展到运动结构。我们的方法着重于采用类似牛顿的优化技术的方法,这些方法广泛用于对象跟踪中。该框架考虑了树状和封闭的运动学结构,并允许对关节和约束的灵活配置。为了从单个刚体到多体系统的项目方程式,使用了雅各布人。对于封闭的运动链,开发了一种具有Lagrange乘数的新型配方。在详细的数学证明中,我们表明我们的约束配方会导致精确的运动解,并在单个迭代中收敛。基于提出的框架,我们将ICG扩展到了最新的刚性对象跟踪算法,将其扩展到多体跟踪。为了进行评估,我们创建了一个高度现实的合成数据集,该数据集具有大量序列和各种机器人。基于此数据集,我们进行了多种实验,这些实验证明了开发框架和我们的多体跟踪器的出色性能。
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
Roadheader是一款在地下工程和采矿行业中广泛使用的工程机器人。 Roadheader的交互式动力学模拟是无人发掘和虚拟现实训练中的一个基本问题。但是,当前的研究仅基于传统的动画技术或商业游戏引擎。很少有研究将计算机图形的实时物理模拟应用于Roadheader机器人领域。本文旨在介绍一个基于物理的式型型式机器人的模拟系统。为此,提出了基于广义坐标的改进的多体模拟方法。首先,我们的仿真方法描述了基于广义坐标的机器人动力学。与最新方法相比,我们的方法更稳定和准确。数值仿真结果表明,在相同数量的迭代中,我们的方法的错误明显少于游戏引擎。其次,我们对动态迭代采用符号欧盟积分器,而不是传统的四阶runge-kutta(RK4)方法。与其他集成剂相比,在长期模拟过程中,我们的方法在能量漂移方面更加稳定。测试结果表明,我们的系统达到了每秒60帧(FPS)的实时交互性能。此外,我们提出了一种模型格式,用于实施该系统的路障机器人建模。我们的Roadheader的交互式模拟系统满足了交互,准确性和稳定性的要求。
translated by 谷歌翻译
当今,机器人技术的新型机器人运动学和基于学习的应用程序的开发几乎完全在模拟中进行,然后才在现实世界中实施。特别是,与传统的操纵器相比,模块化可重构机器人(MRR)是工业机器人技术的令人兴奋的创新,有望更大的灵活性,提高可维护性和成本效益。但是,几十年来,没有像为机器人操纵器对模块进行模拟和模型组件的工具或标准化方法。我们介绍了工业模块化机器人技术的工具箱(Timor),这是一种python工具箱,可弥合此间隙并将模块化机器人技术集成在现有的仿真和优化管道中。我们的开源库配备了各种示例和教程,并且可以轻松地与现有的仿真工具集成在一起 - 尤其是通过提供任意模块化机器人组件的URDF导出,从而使快速模型生成。
translated by 谷歌翻译
该论文提出了一个计划者,以使用质心动力学和人形机器人的完整运动学来产生步行轨迹。机器人与行走表面之间的相互作用是通过新条件明确建模的,即\ emph {动态互补性约束}。该方法不需要预定义的接触序列,并自动生成脚步。我们通过一组任务来表征机器人控制目标,并通过解决最佳控制问题来解决它。我们表明,可以通过指定最小的参考集,例如恒定所需的质量速度中心和地面上的参考点来自动实现行走运动。此外,我们分析了接触模型选择如何影响计算时间。我们通过为人形机器人ICUB生成和测试步行轨迹来验证该方法。
translated by 谷歌翻译
“无限”软机械臂自由度的自由度使他们的控制尤其具有挑战性。在本文中,我们利用了先前开发的模型,将软臂的等效绘制到一系列通用接头,设计两个闭环控制器:用于轨迹跟踪的配置空间控制器和用于位置控制的任务空间控制器末端效应。在四段软手臂上的广泛实验和模拟证明了以下方面的大量改进:a)配置空间控制器的卓越的跟踪精度和B)减少了任务空间控制器的稳定时间和稳态误差。还验证了任务空间控制器在软臂和环境之间存在相互作用的情况下有效。
translated by 谷歌翻译
最近,由于其灵活和兼容的结构,软机器人技术已迅速成为一个新颖而有希望的研究领域。但是,更难得出这种软机器人的非线性动态模型。软操作器的差分运动学和动力学可以通过经典的Cosserat Rod理论配制为一组高度非线性的部分微分方程(PDE)。在这项工作中,我们提出了一种称为分段线性应变(PLS)的离散建模技术,以解决基于Cosserat的模型的PDE,该模型基于该模型的推导。为了验证所提出的cosserat模型的准确性,通过使用不同的离散方法模拟了重力下的锥形悬臂杆的静态模型。结果表明,PLS cosserat模型与现实世界软操作器的机械变形行为相媲美。最后,建立了该模型的参数识别方案,模拟以及实验验证表明,使用此方法可以以高精度识别模型物理参数。
translated by 谷歌翻译
操纵器运动学与操纵器中每个链路的运动有关,而无需考虑质量或力。在本文中,这是两部分教程中的第一个,我们使用基本变换序列(ETS)为建模操纵器运动学提供了介绍。然后,我们制定了一阶差异运动学,该运动学导致操纵器雅各布式,这是速度控制和逆运动学的基础。我们描述了基本的古典技术,这些技术在展示一些当代应用之前依赖于操纵器Jacobian。本教程的第二部分提供了第二和高阶差异运动学的配方,介绍了操纵器Hessian,并说明了先进的技术,其中一些提高了第一部分中所示的技术的性能本教程。这些笔记本是用Python代码编写的,并使用python的机器人工具箱,以及Swift Simulator提供算法的示例和实现。虽然不是绝对必要的,但对于最吸引人和信息丰富的经验,我们建议在阅读本文时使用Jupyter笔记本。笔记本和设置说明可以在https://github.com/jhavl/dkt上访问。
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译
当前,选择一个最佳机器人并为给定任务配置为给定任务是由人类专业知识或反复试验完成的。为了评估机器人对特定任务的自动选择和适应,我们引入了一个基准套件,其中包含用于机器人,环境和任务描述的通用格式。我们的基准套件对于模块化机器人特别有用,其中机器人的配置本身会创建许多其他参数以优化。基准定义了此优化问题,并促进了解决方案算法的比较。所有基准都可以通过Cobra.cps.cit.tum.de访问,该网站可方便地共享,参考和比较解决方案。
translated by 谷歌翻译