我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
在本文中,我们为非稳定于3D流体结构交互系统提供了一种基于深度学习的阶数(DL-ROM)。所提出的DL-ROM具有非线性状态空间模型的格式,并采用具有长短期存储器(LSTM)的经常性神经网络。我们考虑一种以状态空间格式的可弹性安装的球体的规范流体结构系统,其具有不可压缩的流体流动。我们开发了一种非线性数据驱动的耦合,用于预测横向方向自由振动球的非定常力和涡旋诱导的振动(VIV)锁定。我们设计输入输出关系作为用于流体结构系统的低维逼近的力和位移数据集的时间序列。基于VIV锁定过程的先验知识,输入功能包含一系列频率和幅度,其能够实现高效的DL-ROM,而无需用于低维建模的大量训练数据集。一旦训练,网络就提供了输入 - 输出动态的非线性映射,其可以通过反馈过程预测较长地平线的耦合流体结构动态。通过将LSTM网络与Eigensystem实现算法(时代)集成,我们构造了用于减少阶稳定性分析的数据驱动状态空间模型。我们通过特征值选择过程调查VIV的潜在机制和稳定性特征。为了了解频率锁定机制,我们研究了针对降低振荡频率和质量比的范围的特征值轨迹。与全阶模拟一致,通过组合的LSTM-ERA程序精确捕获频率锁定分支。所提出的DL-ROM与涉及流体结构相互作用的物理学数字双胞胎的基于物理的数字双胞胎。
translated by 谷歌翻译
数字双胞胎是一个代孕模型,具有反映原始过程行为的主要功能。将动力学过程与降低复杂性的数字双模型相关联具有很大的优势,可以将动力学以高精度和CPU时间和硬件的成本降低到遭受重大变化的时间表,因此很难探索。本文介绍了一个新的框架,用于创建有效的数字双流体流量流量。我们介绍了一种新型算法,该算法结合了基于Krylov的动态模式分解的优势和正确的正交分解,并优于选择最有影响力的模式。我们证明,随机正交分解算法提供了比SVD经验正交分解方法的几个优点,并减轻了对多目标优化问题的投影误差。我们涉及最先进的艺术人工智能(DL)以执行实时的实时学习(DL)数字双胞胎模型的自适应校准,富裕性的增加。该输出是流体流动动力学的高保真数字双数据数据模型,具有降低的复杂性。在三波现象的数值模拟中,随着复杂性的增加,研究了新的建模工具。我们表明,输出与原始源数据一致。我们在数值准确性和计算效率方面对新数字数据模型的性能进行彻底评估,包括时间模拟响应功能研究。
translated by 谷歌翻译
在这项研究中,我们调查了动态模式分解(DMD)算法的稳定性到嘈杂的数据。为了实现稳定的DMD算法,我们将截断的总,最小二乘(T-TLS)回归和最佳截断级别选择应用于TLS DMD算法。通过向TLS DMD算法添加截断正则化,T-TLS DMD可以提高计算的稳定性,同时保持TLS DMD的精度。通过对自助式细胞现象的圆筒和实际压敏涂料(PSP)数据的唤醒分析,评估T-TLS DMD的有效性。结果表明,正规化在DMD算法中的重要性。关于特征值,T-TLS DMD受到噪声的影响较小,并且可以稳定地获得精确的特征值,而TLS和子空间DMD的特征值可能由于噪音大大变化。如前所述,它还观察到标准的特征值和精确的DMD具有转移到阻尼侧的问题。关于特征向量,T-TLS和精确的DMD即使在存在噪声的情况下也明确地捕获了特征流模式,而TLS和子空间DMD不能由于噪音而清楚地捕获它们。
translated by 谷歌翻译
由于其与线性主成分分析(PCA)相比,通过AutoEncoders的非线性主成分分析(NLPCA)通过自动化系统引起了动态系统社区的注意力。这些模型减少方法在应用于由于对称性的存在而展示具有全局不变样品的数据集时经历潜在空间的维度的增加。在这项研究中,我们在AutoEncoder中介绍了一种新颖的机器学习,它使用空间变压器网络和暹罗网络分别考虑连续和离散的对称。空间变压器网络发现连续平移或旋转的最佳变化,使得不变样本在周期性方向上对齐。同样,暹罗网络在离散移位和反射下不变的样本。因此,所提出的对称感知的AutoEncoder是不变的,到预定的输入变换,指示底层物理系统的动态。该嵌入可以与线性和非线性还原方法一起使用,我们将对称感知PCA(S-PCA)和对称感知NLPCA(S-NLPCA)采用。我们将建议的框架应用于3个流体流动问题:汉堡方程,流过一步漫射器的流程和kolmogorov流程的模拟,展示了表现出仅连续对称的情况的能力,只能离散对称或两者的组合。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
时间序列数据,例如不稳定的压力敏感涂料(PSP)测量数据,可能包含大量随机噪声。因此,在这项研究中,我们研究了一种将多元奇异频谱分析(MSSA)与低维数据表示结合的降噪方法。 MSSA是一种使用时间延迟嵌入的状态空间重建技术,并且通过将数据投影到单数值分解(SVD)基础上来实现低维表示。将提出的不稳定PSP数据(即预计的MSSA)的降噪性能与截短的SVD方法的降噪性能(预计的MSSA),这是使用最多的降噪方法之一。结果表明,与截断的SVD方法相比,预测的MSSA在减少随机噪声方面表现出更好的性能。此外,与截断的SVD方法相比,投影的MSSA的性能对截断等级不太敏感。此外,预测的MSSA通过从嘈杂的输入数据中提取状态空间中的平滑轨迹来有效地实现脱氧。预计,预计的MSSA将有效地减少不仅PSP测量数据中的随机噪声,还可以有效地降低各种高维时间序列数据。
translated by 谷歌翻译
Koopman运算符全球线性化非线性动力学系统及其光谱信息是分析和分解非线性动力学系统的强大工具。但是,Koopman运营商是无限维度的,计算其光谱信息是一个巨大的挑战。我们介绍了Measure-tearving扩展动态模式分解($ \ texttt {mpedmd} $),这是第一种截断方法,其特征性组件收敛到koopman运算符的光谱,以用于一般测量的动态系统。 $ \ texttt {mpedmd} $是基于正交式procrustes问题的数据驱动算法,该问题使用可观察的一般字典来强制测量Koopman运算符的截断。它具有灵活性且易于使用的任何预先存在的DMD类型方法,并且具有不同类型的数据。我们证明了$ \ texttt {mpedmd} $的融合,用于投影值和标量值光谱测量,光谱和koopman模式分解。对于延迟嵌入(Krylov子空间)的情况,我们的结果包括随着字典的大小增加,光谱测量近似值的第一个收敛速率。我们在一系列具有挑战性的示例中演示了$ \ texttt {mpedmd} $,与其他DMD型方法相比,其对噪声的稳健性提高,以及其捕获湍流边界层实验测量的能源保存和级联反应的能力,并以Reynolds的方式流动。数字$> 6 \ times 10^4 $和状态空间尺寸$> 10^5 $。
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
在随机抽样方法中,马尔可夫链蒙特卡洛算法是最重要的。在随机行走都市方案中,我们利用分析方法和数值方法的结合研究了它们的收敛性能。我们表明,偏离目标稳态分布的偏差特征是定位过渡的函数,这是定义随机步行的尝试跳跃的特征长度。该过渡大大改变了误差,而误差是通过不完整的收敛引入的,并区分了两个方案,其中弛豫机制分别受扩散和排斥分别受到限制。
translated by 谷歌翻译
我们开发了一种多尺度方法,以从实验或模拟中观察到的物理字段或配置的数据集估算高维概率分布。通过这种方式,我们可以估计能量功能(或哈密顿量),并有效地在从统计物理学到宇宙学的各个领域中生成多体系统的新样本。我们的方法 - 小波条件重新归一化组(WC-RG) - 按比例进行估算,以估算由粗粒磁场来调节的“快速自由度”的条件概率的模型。这些概率分布是由与比例相互作用相关的能量函数建模的,并以正交小波为基础表示。 WC-RG将微观能量函数分解为各个尺度上的相互作用能量之和,并可以通过从粗尺度到细度来有效地生成新样品。近相变,它避免了直接估计和采样算法的“临界减速”。理论上通过结合RG和小波理论的结果来解释这一点,并为高斯和$ \ varphi^4 $字段理论进行数值验证。我们表明,多尺度WC-RG基于能量的模型比局部电位模型更通用,并且可以在所有长度尺度上捕获复杂的多体相互作用系统的物理。这是针对反映宇宙学中暗物质分布的弱透镜镜头的,其中包括与长尾概率分布的长距离相互作用。 WC-RG在非平衡系统中具有大量的潜在应用,其中未知基础分布{\ it先验}。最后,我们讨论了WC-RG和深层网络体系结构之间的联系。
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
科学机器学习的进步改善了现代计算科学和工程应用。数据驱动的方法(例如动态模式分解(DMD))可以从动态系统生成的时空数据中提取相干结构,并推断上述系统的不同方案。时空数据作为快照,每次瞬间包含空间信息。在现代工程应用中,高维快照的产生可能是时间和/或资源要求。在本研究中,我们考虑了在大型数值模拟中增强DMD工作流程的两种策略:(i)快照压缩以减轻磁盘压力; (ii)使用原位可视化图像在运行时重建动力学(或部分)。我们通过两个3D流体动力学模拟评估我们的方法,并考虑DMD重建解决方案。结果表明,快照压缩大大减少了所需的磁盘空间。我们已经观察到,损耗的压缩将存储降低了几乎$ 50 \%$,而信号重建和其他关注数量的相对错误则较低。我们还使用原位可视化工具将分析扩展到了直接生成的数据,在运行时生成状态向量的图像文件。在大型模拟中,快照的产生可能足够慢,可以使用批处理算法进行推理。流DMD利用增量SVD算法,并随着每个新快照的到来更新模式。我们使用流式DMD来重建原位生成的图像的动力学。我们证明此过程是有效的,并且重建的动力学是准确的。
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译