两视图知识图(kgs)共同表示两个组成部分:抽象和常识概念的本体论观点,以及针对本体论概念实例化的特定实体的实例视图。因此,这些kg包含来自实例视图的本体学和周期性的分层的异质结构。尽管KG中有这些不同的结构,但最新的嵌入KG的作品假设整个KG仅属于两个观点之一,但并非同时属于。对于寻求将KG视为两种视图的作品,假定实例和本体论的观点属于相同的几何空间,例如所有嵌入在同一欧几里得空间中的节点或非欧盟产品空间,不再是合理的。对于两视图kg,图表的不同部分显示出不同的结构。为了解决这个问题,我们定义并构建了一个双几何空间嵌入模型(DGS),该模型通过将KG的不同部分嵌入不同的几何空间中,该模型使用复杂的非欧盟几何几何空间进行对两视图KGS进行建模。 DGS利用球形空间,双曲线空间及其在统一框架中学习嵌入的框架中的相交空间。此外,对于球形空间,我们提出了直接在球形空间中运行的新型封闭的球形空间操作员,而无需映射到近似切线空间。公共数据集上的实验表明,DGS在KG完成任务上的先前最先进的基线模型明显优于先前的基线模型,这表明了其在KGS中更好地建模异质结构的能力。
translated by 谷歌翻译
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
translated by 谷歌翻译
知识图(kg)嵌入在实体的学习表示和链接预测任务的关系方面表现出很大的力量。以前的工作通常将KG嵌入到单个几何空间中,例如欧几里得空间(零弯曲),双曲空间(负弯曲)或超透明空间(积极弯曲),以维持其特定的几何结构(例如,链,层次结构和环形结构)。但是,KGS的拓扑结构似乎很复杂,因为它可能同时包含多种类型的几何结构。因此,将kg嵌入单个空间中,无论欧几里得空间,双曲线空间或透明空间,都无法准确捕获KGS的复杂结构。为了克服这一挑战,我们提出了几何相互作用知识图嵌入(GIE),该图形嵌入了,该图形在欧几里得,双曲线和超级空间之间进行了交互学习的空间结构。从理论上讲,我们提出的GIE可以捕获一组更丰富的关系信息,模型键推理模式,并启用跨实体的表达语义匹配。三个完善的知识图完成基准的实验结果表明,我们的GIE以更少的参数实现了最先进的性能。
translated by 谷歌翻译
双曲线神经网络由于对几个图形问题的有希望的结果,包括节点分类和链接预测,因此最近引起了极大的关注。取得成功的主要原因是双曲空间在捕获图数据集的固有层次结构方面的有效性。但是,在非层次数据集方面,它们在概括,可伸缩性方面受到限制。在本文中,我们对双曲线网络进行了完全正交的观点。我们使用Poincar \'e磁盘对双曲线几何形状进行建模,并将其视为磁盘本身是原始的切线空间。这使我们能够用欧几里院近似替代非尺度的M \“ Obius Gyrovector操作,因此将整个双曲线模型简化为具有双曲线归一化功能的欧几里得模型。它仍然在Riemannian歧管中起作用,因此我们称其为伪poincar \'e框架。我们将非线性双曲线归一化应用于当前的最新均质和多关系图网络,与欧几里得和双曲线对应物相比,性能的显着改善。这项工作的主要影响在于其在欧几里得空间中捕获层次特征的能力,因此可以替代双曲线网络而不会损失性能指标,同时利用欧几里得网络的功能,例如可解释性和有效执行各种模型组件。
translated by 谷歌翻译
在“知识图”(kgs)的表示领域中,超级关系的事实由主要三重和几个辅助属性描述组成,这被认为比基于三重的事实更全面,更具体。但是,由于代表实体之间的隶属关系的层次结构削弱,因此,单个视图中现有的超相关KG嵌入方法受到限制。为了打破这一限制,我们提出了一个双视性超相关kg(DH-kg)结构,该结构包含实体的超相关实例视图,以及对从实体到共同模型超相关的概念的超相关本体论视图和分层信息。在本文中,我们首先定义了DH-KG上的链接预测和实体键入任务,并根据医疗数据构建了两个DH-KG数据集,即从Wikidata和HTDM中提取的JW44K-6K。此外,我们根据Gran编码器,HGNN和联合学习提出了DH-KG嵌入模型DHGE。实验结果表明,DHGE在DH-KG上的表现优于基线模型。我们还提供了该技术在高血压药物领域中应用的示例。我们的模型和数据集公开可用。
translated by 谷歌翻译
The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models.
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
图表表示学习近年来收到了增加的注意。大多数现有方法忽略了图形结构的复杂性,并限制了单个恒定曲率表示空间中的图形,这仅适用于特定类型的图形结构。此外,这些方法遵循监督或半监督的学习范例,从而显着限制其在实际应用中的未标记图中的部署。为了解决这些上述限制,我们首次尝试研究混合曲率空间中的自我监督的图表表示学习。在本文中,我们提出了一种新颖的自我监督的混合曲率图神经网络(SelfMGNN)。我们不是在一个单一的恒定曲率空间上工作,我们通过多个riemannian组件空间的笛卡尔乘积构建混合曲率空间,并设计分层注意机制,用于学习和融合这些组件空间的表示。为了实现自我超标学习,我们提出了一种新的双重对比方法。混合曲率的黎曼空间实际上为对比学习提供了多个黎曼观点。我们介绍了一个riemananian投影机来揭示这些观点,并利用精心设计的riemananian判别者,以便在里莫安尼亚视图中单独和跨越对比学习。最后,广泛的实验表明SelfMGNN捕获了现实中的复杂图形结构,优于最先进的基线。
translated by 谷歌翻译
知识图(kg)及其本体论的变体已被广泛用于知识表示,并且已证明在增强零拍学习(ZSL)方面非常有效。但是,利用KGS的现有ZSL方法都忽略了KGS中代表的类间关系的内在复杂性。一个典型的功能是,一类通常与不同语义方面的其他类别有关。在本文中,我们专注于增强ZSL的本体,并建议学习以本体论属性为指导的解剖本体嵌入,以捕获和利用不同方面的更细粒度的类关系。我们还贡献了一个名为dozsl的新ZSL框架,该框架包含两个新的ZSL解决方案,分别基于生成模型和图形传播模型有效地利用了分解的本体学嵌入。已经对零摄像图分类(ZS-IMGC)和零射Hot KG完成(ZS-KGC)进行了五个基准测试进行了广泛的评估。 Dozsl通常比最先进的表现更好,并且通过消融研究和案例研究证实了其组成部分。我们的代码和数据集可在https://github.com/zjukg/dozsl上找到。
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
最近,对时间变化的知识图或时间知识图(TKG)的学术兴趣越来越高。先前的研究表明,使用历史信息的TKG推理的多种方法。但是,在不同时间戳上此类信息中对层次结构的关注较少。鉴于TKG是基于时间的一系列知识图,因此序列中的年代学衍生了图之间的层次结构。此外,每个知识图都有其层次结构级别,可能相互不同。为了解决TKG中的这些层次结构特征,我们提出了HyperVC,它利用比欧几里得空间更好地编码层次结构的双曲线空间。不同时间戳上知识图之间的时间顺序结构是通过将知识图作为矢量嵌入通用双曲线空间中的矢量来表示的。此外,通过调整其实体和关系的双曲线嵌入的曲率来表示,知识图的各种层次级别。四个基准数据集的实验显示出很大的改进,尤其是在层次级别较高的数据集上。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
知识图(KG)嵌入旨在学习连续矢量空间中kg的实体和关系的潜在表示。一个经验观察是,与相同关系相关的头部(尾巴)实体通常具有相似的语义属性 - 特别是它们通常属于同一类别 - 无论他们在kg中彼此之间有多远。也就是说,他们具有全球语义相似性。但是,许多现有方法基于本地信息得出了kg嵌入,这些信息无法有效地捕获实体之间的这种全球语义相似性。为了应对这一挑战,我们提出了一种新颖的方法,该方法引入了一组称为\ textit {\ textbf {关系原型实体}}的虚拟节点,以表示由相同关系连接的头和尾部实体的原型。通过强制实体的嵌入靠近其相关的原型的嵌入,我们的方法可以有效地鼓励实体的全球语义相似性(可以在kg中很远 - 通过相同的关系相连。实体一致性和KG完成任务的实验表明,我们的方法显着优于最近的最新方法。
translated by 谷歌翻译
捕获关系的构图模式是知识图表完成中的重要任务。它还是迈向多跳推理的基本步骤,以了解学到的知识。以前,已经开发了几种基于旋转的翻译方法来使用一系列复值对角线矩阵的产品来模拟复合关系。然而,这些方法倾向于对复合关系进行几种超薄假设,例如,强迫他们独立于实体和缺乏语义等级的交换。为了系统地解决这些问题,我们开发了一种新颖的知识图形嵌入方法,命名为密集,为复杂的关系模式提供改进的建模方案。特别地,我们的方法将每个关系分解成SO(3)基于基于组的旋转操作员和三维(3-D)欧几里德空间中的缩放操作员。这种设计原理导致我们的方法的几个优点:(1)对于复合关系,相应的对角线关系矩阵可以是非换向的,反映了现实世界应用中的主要情景; (2)我们的模型保留了关系运营和实体嵌入之间的自然互动; (3)缩放操作为实体的内在语义层次结构提供建模电力; (4)在参数大小和培训时间方面,以高计算效率实现致密的增强效果; (5)欧几里德空间中的建模实体而不是四元数空间,保持关系模式的直接几何解释。多个基准知识图上的实验结果表明,密集优于当前最先进的模型,以缺少链路预测,尤其是对复合关系。
translated by 谷歌翻译
翻译,旋转和缩放是图像处理中三个常用的几何操作操作。此外,其中一些成功用于开发有效的知识图嵌入(KGE)模型,例如transe和旋转。受协同作用的启发,我们通过利用这项工作中的所有三项操作提出了一个新的KGE模型。由于翻译,旋转和缩放操作被级联形成一个复合的操作,因此新模型被命名为复合。通过在小组理论的框架中铸造复合物,我们表明,基于得分功能的KGE模型是复合的特殊情况。Compounde将简单的基于距离的关系扩展到与关系有关的化合物操作上的头部和/或尾部实体。为了证明化合物的有效性,我们对三个流行的KG完成数据集进行了实验。实验结果表明,复合者始终达到了现状的性能。
translated by 谷歌翻译
我们介绍了一个名为Nuge的新型嵌入式模型,旨在将实体和关系之间的共同发生整合到图形神经网络中,以改善知识图形完成(即,链接预测)。鉴于知识图形,Nuge将单个图形构建,考虑实体和关系作为单个节点。然后,Nuge基于实体和关系的共同发生来计算节点之间的边缘的权重。接下来,Nuge提出双季型图形神经网络(DualQGNN),并利用DualQGNN更新实体和关系节点的向量表示。然后采用分数函数来产生三重分数。综合实验结果表明,NOGE在三个新的和困难的基准数据集Codex上获得最先进的结果,用于知识图形完成。
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译
在本文中,我们介绍了一种新的基于GNN的知识图形嵌入模型,命名为WGE,以捕获聚焦的图形结构和关联的图形结构。特别是,鉴于知识图形,WGE构建一个无向实体的聚焦图,该图形将实体视为节点。此外,WGE还从关联的约束构造另一个无向图形,将实体和关系视为节点。然后,WGE提出了一种新的架构,即直接在这两个单个图表上使用两个vanilla GNNS,以更好地更新实体和关系的矢量表示,然后是加权得分函数来返回三重分数。实验结果表明,WGE在三个新的和具有挑战性的基准数据集Codex上获得最先进的表演,用于知识图形完成。
translated by 谷歌翻译
知识图(kg)对齐 - 指识别不同kgs中同一件事的实体的任务 - 被认为是KG构造领域中最重要的操作之一。然而,现有的对齐技术通常假设输入kgs是完整的并且同性的,这是由于域,大小和稀疏性的现实世界异质性而不是真实。在这项工作中,我们解决了与代表学习对齐不完整的KG对齐的问题。我们的KG嵌入式框架利用了两个特征频道:基于传输型和基于接近的。前者通过翻译路径捕获实体之间的一致性约束,而后者通过注意引导关系感知图形神经网络捕获KG的邻域结构。两个特征频道共同学习以在输入kgs之间交换重要特征,同时强制在同一嵌入空间中强制输入kg的输出表示。此外,我们开发了缺失的链接检测器,该探测器发现并恢复培训过程中输入kgs中的缺失链接,这有助于减轻不完整性问题,从而提高学习象征的兼容性。然后将嵌入的熔合融合以生成对准结果,并且高置信匹配节点对被更新为预先调整的监控数据以逐渐改善嵌入。经验结果表明,我们的型号比SOTA更准确,而且对不同级别的不完整性较高,高达15.2 \%。我们还证明了KGS之间交换的知识有助于揭示知识图表(A.K.A.知识完成)的看不见的事实,结果比SOTA知识图形完成技术高3.5 \%。
translated by 谷歌翻译
知识图(kgs)在许多应用程序中越来越重要的基础架构,同时患有不完整问题。 KG完成任务(KGC)自动根据不完整的KG预测缺失的事实。但是,现有方法在现实情况下表现不佳。一方面,他们的性能将巨大的降解,而kg的稀疏性越来越大。另一方面,预测的推理过程是一个不可信的黑匣子。本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即HOGRN。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地模拟具有可解释性的KG结构。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚合和基于设计组成的注意。轻巧的设计使HOGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果表现出了令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要成分的有效性。我们的代码将在接受后发布。
translated by 谷歌翻译