最近,对时间变化的知识图或时间知识图(TKG)的学术兴趣越来越高。先前的研究表明,使用历史信息的TKG推理的多种方法。但是,在不同时间戳上此类信息中对层次结构的关注较少。鉴于TKG是基于时间的一系列知识图,因此序列中的年代学衍生了图之间的层次结构。此外,每个知识图都有其层次结构级别,可能相互不同。为了解决TKG中的这些层次结构特征,我们提出了HyperVC,它利用比欧几里得空间更好地编码层次结构的双曲线空间。不同时间戳上知识图之间的时间顺序结构是通过将知识图作为矢量嵌入通用双曲线空间中的矢量来表示的。此外,通过调整其实体和关系的双曲线嵌入的曲率来表示,知识图的各种层次级别。四个基准数据集的实验显示出很大的改进,尤其是在层次级别较高的数据集上。
translated by 谷歌翻译
知识图(kg)嵌入在实体的学习表示和链接预测任务的关系方面表现出很大的力量。以前的工作通常将KG嵌入到单个几何空间中,例如欧几里得空间(零弯曲),双曲空间(负弯曲)或超透明空间(积极弯曲),以维持其特定的几何结构(例如,链,层次结构和环形结构)。但是,KGS的拓扑结构似乎很复杂,因为它可能同时包含多种类型的几何结构。因此,将kg嵌入单个空间中,无论欧几里得空间,双曲线空间或透明空间,都无法准确捕获KGS的复杂结构。为了克服这一挑战,我们提出了几何相互作用知识图嵌入(GIE),该图形嵌入了,该图形在欧几里得,双曲线和超级空间之间进行了交互学习的空间结构。从理论上讲,我们提出的GIE可以捕获一组更丰富的关系信息,模型键推理模式,并启用跨实体的表达语义匹配。三个完善的知识图完成基准的实验结果表明,我们的GIE以更少的参数实现了最先进的性能。
translated by 谷歌翻译
The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models.
translated by 谷歌翻译
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
translated by 谷歌翻译
Temporal knowledge graph, serving as an effective way to store and model dynamic relations, shows promising prospects in event forecasting. However, most temporal knowledge graph reasoning methods are highly dependent on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current moment is often the combined effect of a small part of historical information and those unobserved underlying factors. To this end, we propose a new event forecasting model called Contrastive Event Network (CENET), based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query. Simultaneously, it trains representations of queries to investigate whether the current moment depends more on historical or non-historical events by launching contrastive learning. The representations further help train a binary classifier whose output is a boolean mask to indicate related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least $8.3\%$ relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.
translated by 谷歌翻译
两视图知识图(kgs)共同表示两个组成部分:抽象和常识概念的本体论观点,以及针对本体论概念实例化的特定实体的实例视图。因此,这些kg包含来自实例视图的本体学和周期性的分层的异质结构。尽管KG中有这些不同的结构,但最新的嵌入KG的作品假设整个KG仅属于两个观点之一,但并非同时属于。对于寻求将KG视为两种视图的作品,假定实例和本体论的观点属于相同的几何空间,例如所有嵌入在同一欧几里得空间中的节点或非欧盟产品空间,不再是合理的。对于两视图kg,图表的不同部分显示出不同的结构。为了解决这个问题,我们定义并构建了一个双几何空间嵌入模型(DGS),该模型通过将KG的不同部分嵌入不同的几何空间中,该模型使用复杂的非欧盟几何几何空间进行对两视图KGS进行建模。 DGS利用球形空间,双曲线空间及其在统一框架中学习嵌入的框架中的相交空间。此外,对于球形空间,我们提出了直接在球形空间中运行的新型封闭的球形空间操作员,而无需映射到近似切线空间。公共数据集上的实验表明,DGS在KG完成任务上的先前最先进的基线模型明显优于先前的基线模型,这表明了其在KGS中更好地建模异质结构的能力。
translated by 谷歌翻译
双曲线神经网络由于对几个图形问题的有希望的结果,包括节点分类和链接预测,因此最近引起了极大的关注。取得成功的主要原因是双曲空间在捕获图数据集的固有层次结构方面的有效性。但是,在非层次数据集方面,它们在概括,可伸缩性方面受到限制。在本文中,我们对双曲线网络进行了完全正交的观点。我们使用Poincar \'e磁盘对双曲线几何形状进行建模,并将其视为磁盘本身是原始的切线空间。这使我们能够用欧几里院近似替代非尺度的M \“ Obius Gyrovector操作,因此将整个双曲线模型简化为具有双曲线归一化功能的欧几里得模型。它仍然在Riemannian歧管中起作用,因此我们称其为伪poincar \'e框架。我们将非线性双曲线归一化应用于当前的最新均质和多关系图网络,与欧几里得和双曲线对应物相比,性能的显着改善。这项工作的主要影响在于其在欧几里得空间中捕获层次特征的能力,因此可以替代双曲线网络而不会损失性能指标,同时利用欧几里得网络的功能,例如可解释性和有效执行各种模型组件。
translated by 谷歌翻译
Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
在时间图上的表示学习吸引了大量的研究注意力,因为它在各种各样的现实应用程序中的基本重要性。尽管许多研究成功地获得了时间依赖的表示,但它仍然面临重大挑战。一方面,大多数现有方法都以一定的曲率限制了嵌入空间。然而,实际上,潜在的几何形状随着时间的推移而变化的曲率超球,零曲率欧几里得和负曲率双曲空间发生了变化。另一方面,这些方法通常需要丰富的标签来学习时间表示,从而明显限制了它们在真实应用程序的未标记图中的广泛使用。为了弥合这一差距,我们首次尝试研究一般的Riemannian空间中自我监督的时间图表示学习的问题,从而支持随时间变化的曲率在超球,欧几里得和双曲线空间之间转移。在本文中,我们提出了一种新颖的自我监督的Riemannian图神经网络(SEXTRGNN)。具体而言,我们设计了具有理论上的时间编码的曲率变化的Riemannian GNN,并随着时间的推移制定功能性曲率,以模拟正,零和负曲率空间之间的演变转换。为了启用自我监督的学习,我们提出了一种新颖的重新处理自我对比的方法,探索Riemannian空间本身而无需增强,并提出了一种基于边缘的自我监督的曲率学习,并使用RICCI曲率进行。广泛的实验表明了SelfRGNN的优越性,此外,案例研究表明了现实中时间图的时变曲率。
translated by 谷歌翻译
虽然知识图表包含各种实体的丰富语义知识和它们之间的关系信息,但时间知识图(TKG)进一步表明实体随时间的相互作用。为了研究如何更好地模范TKG,自动时间知识图完成(TKGC)已经获得了很大的兴趣。最近的TKGC方法旨在整合先进的深度学习技术,例如注意机制和变压器,提高模型性能。然而,我们发现与采用各种复杂模块相比,更有利的是更好地利用沿时间轴的全部时间信息。在本文中,我们为TKGC提出了一个简单但强大的图形编码器Targcn。 targcn是参数效率,它广泛利用了整个时间上下文的信息。我们在三个基准数据集执行实验。与最先进的模型相比,我们的模型可以在GDELT数据集中实现42%以上的相对改善。同时,它优于ICEWS05-15数据集的最强大的基线,参数减少约为18.5%。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
推断在时间知识图中的缺失的事实是一项关键任务,已被广泛探索。在时间推理任务中的外推更具挑战性,并且由于没有直接的历史事实来预测,逐渐引起研究人员的注意力。以前的作品试图申请进化的代表学习,以解决推断问题。然而,这些技术没有明确地利用各种时序感知属性表示,即,推理性能受到历史长度的显着影响。为了减轻推理未来缺失事实时的时间依赖,我们提出了一种记忆触发的决策(MTDM)网络,该网络包括瞬态记忆,长期记忆和深回忆。具体地,瞬态学习网络认为瞬态存储器作为静态知识图,并且时间感知的经常性演化网络通过长短期存储器的一系列经常性演化单元来学习表示。每个演化单元由结构编码器组成,以聚合边缘信息,具有用于更新实体的属性表示的Gating单元的时间编码器。 MTDM利用制备的残余多关系聚合器作为结构编码器来解决多跳覆盖问题。我们还介绍了更好地理解事件溶解过程的溶解学习限制。广泛的实验证明了MTDM减轻了历史依赖性并实现了最先进的预测性能。此外,与最先进的基线相比,MTDM显示了更快的收敛速度和训练速度。
translated by 谷歌翻译
图表表示学习近年来收到了增加的注意。大多数现有方法忽略了图形结构的复杂性,并限制了单个恒定曲率表示空间中的图形,这仅适用于特定类型的图形结构。此外,这些方法遵循监督或半监督的学习范例,从而显着限制其在实际应用中的未标记图中的部署。为了解决这些上述限制,我们首次尝试研究混合曲率空间中的自我监督的图表表示学习。在本文中,我们提出了一种新颖的自我监督的混合曲率图神经网络(SelfMGNN)。我们不是在一个单一的恒定曲率空间上工作,我们通过多个riemannian组件空间的笛卡尔乘积构建混合曲率空间,并设计分层注意机制,用于学习和融合这些组件空间的表示。为了实现自我超标学习,我们提出了一种新的双重对比方法。混合曲率的黎曼空间实际上为对比学习提供了多个黎曼观点。我们介绍了一个riemananian投影机来揭示这些观点,并利用精心设计的riemananian判别者,以便在里莫安尼亚视图中单独和跨越对比学习。最后,广泛的实验表明SelfMGNN捕获了现实中的复杂图形结构,优于最先进的基线。
translated by 谷歌翻译
捕获关系的构图模式是知识图表完成中的重要任务。它还是迈向多跳推理的基本步骤,以了解学到的知识。以前,已经开发了几种基于旋转的翻译方法来使用一系列复值对角线矩阵的产品来模拟复合关系。然而,这些方法倾向于对复合关系进行几种超薄假设,例如,强迫他们独立于实体和缺乏语义等级的交换。为了系统地解决这些问题,我们开发了一种新颖的知识图形嵌入方法,命名为密集,为复杂的关系模式提供改进的建模方案。特别地,我们的方法将每个关系分解成SO(3)基于基于组的旋转操作员和三维(3-D)欧几里德空间中的缩放操作员。这种设计原理导致我们的方法的几个优点:(1)对于复合关系,相应的对角线关系矩阵可以是非换向的,反映了现实世界应用中的主要情景; (2)我们的模型保留了关系运营和实体嵌入之间的自然互动; (3)缩放操作为实体的内在语义层次结构提供建模电力; (4)在参数大小和培训时间方面,以高计算效率实现致密的增强效果; (5)欧几里德空间中的建模实体而不是四元数空间,保持关系模式的直接几何解释。多个基准知识图上的实验结果表明,密集优于当前最先进的模型,以缺少链路预测,尤其是对复合关系。
translated by 谷歌翻译
在时间知识图(TKGS)中,时间维度附加到知识库中的事实,导致(Nintendo,warpore,Super Mario,Super Mario,9月13日至1985年)之间的四倍体,在此谓词在时间间隔内保持在时间戳。我们提出了一名强化学习代理,同时收集有关查询实体社区的时间相关信息。我们将探索图结构的编码称为指纹,用作Q-NETWORK的输入。我们的代理商依次确定需要探索哪种关系类型,以扩展查询实体的本地子图。我们的评估表明,与最先进的嵌入TKG相比,提出的方法会产生竞争性结果,我们还获得有关受试者和对象之间相关结构的信息。
translated by 谷歌翻译
知识图完成(KGC)旨在发现知识图(KGS)中实体之间的缺失关系。大多数先前的KGC工作都集中在实体和关系的学习表现上。然而,通常需要更高维度的嵌入空间才能获得更好的推理能力,这会导致更大的模型大小,并阻碍对现实世界中的问题的适用性(例如,大规模kgs或移动/边缘计算)。在这项工作中提出了一种称为GreenKGC的轻型模块化的KGC解决方案,以解决此问题。 GreenKGC由三个模块组成:1)表示学习,2)特征修剪和3)决策学习。在模块1中,我们利用现有的KG嵌入模型来学习实体和关系的高维表示。在模块2中,KG分为几个关系组,然后分为一个特征修剪过程,以找到每个关系组的最判别特征。最后,将分类器分配给每个关系组,以应对模块3中KGC任务的低维三功能原始的高维嵌入型号尺寸较小。此外,我们对两个三重分类数据集进行了实验,以证明相同的方法可以推广到更多任务。
translated by 谷歌翻译
双曲线网络在涉及各个领域的层次数据集(例如计算机视觉,图形分析和自然语言处理)的几个领域中显示出对其欧几里得对应物的显着改进。但是,由于(i)对加速深度学习硬件的不可易度性,(ii)由于夸张空间关闭而消失的梯度以及(iii)由于本地切线空间和频繁映射而导致的信息丢失,因此它们在实践中的采用仍然受到限制。完全双曲线空间。为了解决这些问题,我们建议使用Taylor系列扩展对双曲线操作员进行近似,这使我们能够将计算昂贵的切线和余弦双曲线功能重新调整为更有效的多项式型号。这使我们能够保留保留双曲线空间层次解剖结构的好处,同时保持对当前加速深度学习基础设施的可伸缩性。多项式配方还使我们能够利用欧几里得网络中的进步,例如梯度剪辑和relu激活,以避免由于经常在切线空间和双曲空间之间进行切换而消除梯度并消除错误。我们对图形分析和计算机视觉域中标准基准测试的经验评估表明,在记忆和时间复杂性方面,我们的多项式公式与欧几里得体系结构一样可扩展,同时提供的结果与双曲线模型一样有效。此外,由于我们解决了消失的梯度和信息丢失,我们的配方还显示出对基线的大幅改进。
translated by 谷歌翻译
最近,链接预测问题,也称为知识图完成,已经吸引了大量的研究。即使最近的型号很少试图通过在低维度中嵌入知识图表来实现相对良好的性能,即目前最先进的模型的最佳结果是以大大提高嵌入的维度的成本赚取的。然而,这导致在巨大知识库的情况下导致过度舒服和更重要的可扩展性问题。灵感灵感来自变压器模型的变体提供的深度学习的进步,因为它的自我关注机制,在本文中,我们提出了一种基于IT的模型来解决上述限制。在我们的模型中,自我关注是将查询依赖预测应用于实体和关系的关键,并捕获它们之间的相互信息,以获得来自低维嵌入的高度富有表现力的表现。两种标准链路预测数据集,FB15K-237和WN18RR的经验结果表明,我们的模型比我们三个最近最近期的最新竞争对手实现了相当的性能或更好的性能,其维度的重大减少了76.3%平均嵌入。
translated by 谷歌翻译