图表表示学习近年来收到了增加的注意。大多数现有方法忽略了图形结构的复杂性,并限制了单个恒定曲率表示空间中的图形,这仅适用于特定类型的图形结构。此外,这些方法遵循监督或半监督的学习范例,从而显着限制其在实际应用中的未标记图中的部署。为了解决这些上述限制,我们首次尝试研究混合曲率空间中的自我监督的图表表示学习。在本文中,我们提出了一种新颖的自我监督的混合曲率图神经网络(SelfMGNN)。我们不是在一个单一的恒定曲率空间上工作,我们通过多个riemannian组件空间的笛卡尔乘积构建混合曲率空间,并设计分层注意机制,用于学习和融合这些组件空间的表示。为了实现自我超标学习,我们提出了一种新的双重对比方法。混合曲率的黎曼空间实际上为对比学习提供了多个黎曼观点。我们介绍了一个riemananian投影机来揭示这些观点,并利用精心设计的riemananian判别者,以便在里莫安尼亚视图中单独和跨越对比学习。最后,广泛的实验表明SelfMGNN捕获了现实中的复杂图形结构,优于最先进的基线。
translated by 谷歌翻译
在时间图上的表示学习吸引了大量的研究注意力,因为它在各种各样的现实应用程序中的基本重要性。尽管许多研究成功地获得了时间依赖的表示,但它仍然面临重大挑战。一方面,大多数现有方法都以一定的曲率限制了嵌入空间。然而,实际上,潜在的几何形状随着时间的推移而变化的曲率超球,零曲率欧几里得和负曲率双曲空间发生了变化。另一方面,这些方法通常需要丰富的标签来学习时间表示,从而明显限制了它们在真实应用程序的未标记图中的广泛使用。为了弥合这一差距,我们首次尝试研究一般的Riemannian空间中自我监督的时间图表示学习的问题,从而支持随时间变化的曲率在超球,欧几里得和双曲线空间之间转移。在本文中,我们提出了一种新颖的自我监督的Riemannian图神经网络(SEXTRGNN)。具体而言,我们设计了具有理论上的时间编码的曲率变化的Riemannian GNN,并随着时间的推移制定功能性曲率,以模拟正,零和负曲率空间之间的演变转换。为了启用自我监督的学习,我们提出了一种新颖的重新处理自我对比的方法,探索Riemannian空间本身而无需增强,并提出了一种基于边缘的自我监督的曲率学习,并使用RICCI曲率进行。广泛的实验表明了SelfRGNN的优越性,此外,案例研究表明了现实中时间图的时变曲率。
translated by 谷歌翻译
Continual graph learning routinely finds its role in a variety of real-world applications where the graph data with different tasks come sequentially. Despite the success of prior works, it still faces great challenges. On the one hand, existing methods work with the zero-curvature Euclidean space, and largely ignore the fact that curvature varies over the coming graph sequence. On the other hand, continual learners in the literature rely on abundant labels, but labeling graph in practice is particularly hard especially for the continuously emerging graphs on-the-fly. To address the aforementioned challenges, we propose to explore a challenging yet practical problem, the self-supervised continual graph learning in adaptive Riemannian spaces. In this paper, we propose a novel self-supervised Riemannian Graph Continual Learner (RieGrace). In RieGrace, we first design an Adaptive Riemannian GCN (AdaRGCN), a unified GCN coupled with a neural curvature adapter, so that Riemannian space is shaped by the learnt curvature adaptive to each graph. Then, we present a Label-free Lorentz Distillation approach, in which we create teacher-student AdaRGCN for the graph sequence. The student successively performs intra-distillation from itself and inter-distillation from the teacher so as to consolidate knowledge without catastrophic forgetting. In particular, we propose a theoretically grounded Generalized Lorentz Projection for the contrastive distillation in Riemannian space. Extensive experiments on the benchmark datasets show the superiority of RieGrace, and additionally, we investigate on how curvature changes over the graph sequence.
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译
归因网络上的异常检测最近在许多研究领域(例如控制论异常检测和财务欺诈检测)受到了越来越多的关注。随着深度学习在图表表示上的广泛应用,现有的方法选择将欧几里得图编码器作为骨架进行应用,这可能会失去重要的层次结构信息,尤其是在复杂的网络中。为了解决这个问题,我们建议使用双曲线自我监督对比度学习有效的异常检测框架。具体而言,我们首先通过执行子图抽样进行数据增强。然后,我们通过指数映射和对数映射利用双曲线空间中的分层信息,并通过通过区分过程从负对中减去正对的分数来获得异常得分。最后,在四个现实世界数据集上进行的广泛实验表明,我们的方法在代表性基线方法上的表现优越。
translated by 谷歌翻译
Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
translated by 谷歌翻译
双曲线神经网络由于对几个图形问题的有希望的结果,包括节点分类和链接预测,因此最近引起了极大的关注。取得成功的主要原因是双曲空间在捕获图数据集的固有层次结构方面的有效性。但是,在非层次数据集方面,它们在概括,可伸缩性方面受到限制。在本文中,我们对双曲线网络进行了完全正交的观点。我们使用Poincar \'e磁盘对双曲线几何形状进行建模,并将其视为磁盘本身是原始的切线空间。这使我们能够用欧几里院近似替代非尺度的M \“ Obius Gyrovector操作,因此将整个双曲线模型简化为具有双曲线归一化功能的欧几里得模型。它仍然在Riemannian歧管中起作用,因此我们称其为伪poincar \'e框架。我们将非线性双曲线归一化应用于当前的最新均质和多关系图网络,与欧几里得和双曲线对应物相比,性能的显着改善。这项工作的主要影响在于其在欧几里得空间中捕获层次特征的能力,因此可以替代双曲线网络而不会损失性能指标,同时利用欧几里得网络的功能,例如可解释性和有效执行各种模型组件。
translated by 谷歌翻译
图形神经网络(GNNS)传统上由于1)建模邻域和2)保留不对称,因此由于1)的显着挑战,传统上具有较差的图形(DIGRAPH)的性能。在本文中,我们通过利用从多订购和分区社区的双曲线协作学习以及由社会心理因素的启发的常规方来解决传统GNN中的这些挑战。我们所产生的形式主义,Digraph双曲线网络(D-Hypr)学习双曲线空间中的节点表示,以避免真实世界的结构和语义扭曲。我们对4个任务进行全面的实验:链路预测,节点分类,标志预测和嵌入可视化。D-HYPR在大多数任务和数据集上统计上显着优于本领域的当前状态,同时实现竞争性能。我们的代码和数据将可用。
translated by 谷歌翻译
两视图知识图(kgs)共同表示两个组成部分:抽象和常识概念的本体论观点,以及针对本体论概念实例化的特定实体的实例视图。因此,这些kg包含来自实例视图的本体学和周期性的分层的异质结构。尽管KG中有这些不同的结构,但最新的嵌入KG的作品假设整个KG仅属于两个观点之一,但并非同时属于。对于寻求将KG视为两种视图的作品,假定实例和本体论的观点属于相同的几何空间,例如所有嵌入在同一欧几里得空间中的节点或非欧盟产品空间,不再是合理的。对于两视图kg,图表的不同部分显示出不同的结构。为了解决这个问题,我们定义并构建了一个双几何空间嵌入模型(DGS),该模型通过将KG的不同部分嵌入不同的几何空间中,该模型使用复杂的非欧盟几何几何空间进行对两视图KGS进行建模。 DGS利用球形空间,双曲线空间及其在统一框架中学习嵌入的框架中的相交空间。此外,对于球形空间,我们提出了直接在球形空间中运行的新型封闭的球形空间操作员,而无需映射到近似切线空间。公共数据集上的实验表明,DGS在KG完成任务上的先前最先进的基线模型明显优于先前的基线模型,这表明了其在KGS中更好地建模异质结构的能力。
translated by 谷歌翻译
知识图(kg)嵌入在实体的学习表示和链接预测任务的关系方面表现出很大的力量。以前的工作通常将KG嵌入到单个几何空间中,例如欧几里得空间(零弯曲),双曲空间(负弯曲)或超透明空间(积极弯曲),以维持其特定的几何结构(例如,链,层次结构和环形结构)。但是,KGS的拓扑结构似乎很复杂,因为它可能同时包含多种类型的几何结构。因此,将kg嵌入单个空间中,无论欧几里得空间,双曲线空间或透明空间,都无法准确捕获KGS的复杂结构。为了克服这一挑战,我们提出了几何相互作用知识图嵌入(GIE),该图形嵌入了,该图形在欧几里得,双曲线和超级空间之间进行了交互学习的空间结构。从理论上讲,我们提出的GIE可以捕获一组更丰富的关系信息,模型键推理模式,并启用跨实体的表达语义匹配。三个完善的知识图完成基准的实验结果表明,我们的GIE以更少的参数实现了最先进的性能。
translated by 谷歌翻译
本文研究了用于无监督场景的图形神经网络(GNN)的节点表示。具体地,我们推导了理论分析,并在不适当定义的监督信号时,在不同的图形数据集中提供关于GNN的非稳定性能的实证演示。 GNN的性能取决于节点特征平滑度和图形结构的局部性。为了平滑通过图形拓扑和节点功能测量的节点接近度的差异,我们提出了帆 - 一个小说\下划线{s} elf- \下划线{a} u段图对比度\下划线{i} ve \ nignline {l}收入框架,使用两个互补的自蒸馏正则化模块,\ emph {Ie},内部和图间知识蒸馏。我们展示了帆在各种图形应用中的竞争性能。即使使用单个GNN层,Sail也在各种基准数据集中持续竞争或更好的性能,与最先进的基线相比。
translated by 谷歌翻译
学习电子健康记录(EHRS)表示是一个杰出但未被发现的研究主题。它受益于各种临床决策支持应用,例如药物结果预测或患者相似性搜索。当前的方法集中在特定于任务的标签监督上,对矢量化的顺序EHR,这不适用于大规模无监督的方案。最近,对比度学习在自我监督的代表性学习问题上显示出巨大的成功。但是,复杂的时间性通常会降低表现。我们提出了图形内核信息,这是EHR图形表示的一种自我监督的图内学习方法,以克服先前的问题。与最新的艺术品不同,我们不会更改图形结构以构建增强视图。取而代之的是,我们使用内核子空间扩展将节点嵌入两个几何不同的流形视图中。整个框架是通过通过常用的对比目标在这两种歧管视图上对比的节点和图形表示训练的。从经验上讲,使用公开可用的基准EHR数据集,我们的方法在超过最先进的临床下游任务上产生了表现。从理论上讲,距离指标的变化自然会在不改变图形结构的情况下创建不同的视图作为数据增强。
translated by 谷歌翻译
Graph Contrastive Learning (GCL) has recently drawn much research interest for learning generalizable node representations in a self-supervised manner. In general, the contrastive learning process in GCL is performed on top of the representations learned by a graph neural network (GNN) backbone, which transforms and propagates the node contextual information based on its local neighborhoods. However, nodes sharing similar characteristics may not always be geographically close, which poses a great challenge for unsupervised GCL efforts due to their inherent limitations in capturing such global graph knowledge. In this work, we address their inherent limitations by proposing a simple yet effective framework -- Simple Neural Networks with Structural and Semantic Contrastive Learning} (S^3-CL). Notably, by virtue of the proposed structural and semantic contrastive learning algorithms, even a simple neural network can learn expressive node representations that preserve valuable global structural and semantic patterns. Our experiments demonstrate that the node representations learned by S^3-CL achieve superior performance on different downstream tasks compared with the state-of-the-art unsupervised GCL methods. Implementation and more experimental details are publicly available at \url{https://github.com/kaize0409/S-3-CL.}
translated by 谷歌翻译
We introduce a self-supervised approach for learning node and graph level representations by contrasting structural views of graphs. We show that unlike visual representation learning, increasing the number of views to more than two or contrasting multi-scale encodings do not improve performance, and the best performance is achieved by contrasting encodings from first-order neighbors and a graph diffusion. We achieve new state-ofthe-art results in self-supervised learning on 8 out of 8 node and graph classification benchmarks under the linear evaluation protocol. For example, on Cora (node) and Reddit-Binary (graph) classification benchmarks, we achieve 86.8% and 84.5% accuracy, which are 5.5% and 2.4% relative improvements over previous state-of-the-art. When compared to supervised baselines, our approach outperforms them in 4 out of 8 benchmarks.
translated by 谷歌翻译
对比学习在图表学习领域表现出了巨大的希望。通过手动构建正/负样本,大多数图对比度学习方法依赖于基于矢量内部产品的相似性度量标准来区分图形表示样品。但是,手工制作的样品构建(例如,图表的节点或边缘的扰动)可能无法有效捕获图形的固有局部结构。同样,基于矢量内部产品的相似性度量标准无法完全利用图形的局部结构来表征图差。为此,在本文中,我们提出了一种基于自适应子图生成的新型对比度学习框架,以实现有效且强大的自我监督图表示学习,并且最佳传输距离被用作子绘图之间的相似性度量。它的目的是通过捕获图的固有结构来生成对比样品,并根据子图的特征和结构同时区分样品。具体而言,对于每个中心节点,通过自适应学习关系权重与相应邻域的节点,我们首先开发一个网络来生成插值子图。然后,我们分别构建来自相同和不同节点的子图的正和负对。最后,我们采用两种类型的最佳运输距离(即Wasserstein距离和Gromov-Wasserstein距离)来构建结构化的对比损失。基准数据集上的广泛节点分类实验验证了我们的图形对比学习方法的有效性。
translated by 谷歌翻译
由于其几何特性,双曲线空间可以支持树木和图形结构化数据的高保真嵌入。结果,已经开发了各种双曲线网络,这些网络在许多任务上都超过了欧几里得网络:例如双曲线图卷积网络(GCN)在某些图形学习任务上的表现可以胜过香草GCN。但是,大多数现有的双曲线网络都是复杂的,计算昂贵的,并且在数值上不稳定 - 由于这些缺点,它们无法扩展到大图。提出了越来越多的双曲线网络,越来越不清楚什么关键组成部分使模型行为。在本文中,我们提出了HYLA,这是一种简单而最小的方法,用于在网络中使用双曲线空间:Hyla地图一次从双曲空空间从嵌入荷兰的嵌入到欧几里得空间,并通过双曲线空间中的Laplacian操作员的特征函数。我们在图形学习任务上评估HYLA,包括节点分类和文本分类,其中HYLA可以与任何图神经网络一起使用。当与线性模型一起使用时,HYLA对双曲线网络和其他基线显示出显着改善。
translated by 谷歌翻译
图形相似性学习是指计算两个图之间的相似性得分,这在许多现实的应用程序(例如视觉跟踪,图形分类和协作过滤)中需要。由于大多数现有的图形神经网络产生了单个图的有效图表,因此几乎没有努力共同学习两个图表并计算其相似性得分。此外,现有的无监督图相似性学习方法主要基于聚类,它忽略了图对中体现的有价值的信息。为此,我们提出了一个对比度图匹配网络(CGMN),以进行自我监督的图形相似性学习,以计算任何两个输入图对象之间的相似性。具体而言,我们分别在一对中为每个图生成两个增强视图。然后,我们采用两种策略,即跨视图相互作用和跨刻画相互作用,以实现有效的节点表示学习。前者求助于两种观点中节点表示的一致性。后者用于识别不同图之间的节点差异。最后,我们通过汇总操作进行图形相似性计算将节点表示形式转换为图形表示。我们已经在八个现实世界数据集上评估了CGMN,实验结果表明,所提出的新方法优于图形相似性学习下游任务的最新方法。
translated by 谷歌翻译
尽管图表学习(GRL)取得了重大进展,但要以足够的方式提取和嵌入丰富的拓扑结构和特征信息仍然是一个挑战。大多数现有方法都集中在本地结构上,并且无法完全融合全球拓扑结构。为此,我们提出了一种新颖的结构保留图表学习(SPGRL)方法,以完全捕获图的结构信息。具体而言,为了减少原始图的不确定性和错误信息,我们通过k-nearest邻居方法构建了特征图作为互补视图。该特征图可用于对比节点级别以捕获本地关系。此外,我们通过最大化整个图形和特征嵌入的相互信息(MI)来保留全局拓扑结构信息,从理论上讲,该信息可以简化为交换功能的特征嵌入和原始图以重建本身。广泛的实验表明,我们的方法在半监督节点分类任务上具有相当出色的性能,并且在图形结构或节点特征上噪声扰动下的鲁棒性出色。
translated by 谷歌翻译
最近的作品以自我监督的方式探索学习图表表示。在图形对比学习中,基准方法应用各种图形增强方法。但是,大多数增强方法都是不可学习的,这导致发出不束缚的增强图。这种增强可以缩短曲线图对比学学习方法的表现能力。因此,我们激励我们的方法通过可学习的图形增强器来生成增强图,称为元图形增强器(Mega)。然后,我们阐明了“良好”的图形增强必须在特征级别的实例级别和信息性上具有均匀性。为此,我们提出了一种新颖的方法来学习图形增强者,可以以统一和信息性产生增强。图表增强器的目的是促进我们的特征提取网络,以学习更辨别的特征表示,这激励我们提出元学范式。经验上,多个基准数据集的实验表明,Mega优于图形自我监督学习任务中的最先进的方法。进一步的实验研究证明了巨型术语的有效性。
translated by 谷歌翻译