我们介绍了Dragon,这是一种开源,快速和可解释的硬件仿真和优化工具链,使硬件架构师能够模拟硬件设计,并优化硬件设计以有效地执行工作负载。龙工具链提供以下工具:硬件模型生成器(DGEN),硬件模拟器(DSIM)和硬件优化器(DOPT)。 DSIM提供了所述硬件上的运行算法(表示为数据流图)的模拟。 DGEN用用户输入体系结构/技术(以自定义描述语言表示)详细描述了硬件。来自模拟的梯度下降的新方法使我们优化了硬件模型(为改进技术参数和设计参数的指示),由DOPT提供。 Dragon Framework(DSIM)比以前可用的模拟作品快得多,这是通过性能优先编写惯例,用于常见计算操作的数学公式,以避免避免自行车准确的模拟步骤,有效的映射算法和数据结构表示形式用于硬件状态。 Dragon Framework(DOPT)为AI和非AI工作负载生成性能优化的架构,并为100X-1000X更好的未来计算系统提供技术改进方向。
translated by 谷歌翻译
这项工作侧重于特定于域的加速器的有效敏捷设计方法。我们采用垂直开发堆栈的功能逐个功能增强,并将其应用于TVM / VTA推理加速器。我们已经增强了VTA设计空间,并启用了用于额外工作负载的端到端支持。这是通过增强VTA微架构和指令集架构(ISA)来实现的,以及通过增强TVM编译堆栈来支持各种VTA配置。 VTA TSIM实现(基于凿子)已通过ALU / GEMM执行单元的完全流水线版本增强。在TSIM中,内存宽度现在可以在8-64字节之间。对于支持较大的刮板,已经使场宽度更加灵活。已添加新的说明:元素 - WISE 8位乘法,支持深度卷积,并使用焊盘值的选择加载以支持最大池。还添加了对更多层和更好的双缓冲。完全管制的ALU / GEMM有助于显着帮助:4.9倍的循环较少,最小区域更改为在默认配置下运行RESET-18。可以实例化特征在于11.5倍的循环计数的配置,以12倍的循环计数更大的区域。显示了区域性能帕累托曲线上的许多点,展示了执行单元尺寸,内存接口宽度和刻痕尺寸的余额。最后,VTA现在能够运行MobileNet 1.0和所有层进行Resnet,包括先前禁用的池和完全连接的图层。 TVM / VTA架构始终在几分钟内以RTL呈现端到端工作量评估。通过我们的修改,它现在提供了更大的可行配置,具有广泛的成本与性能。所有提到的所有功能都可以在OpenSource叉中提供,而这些功能的子集已经上游。
translated by 谷歌翻译
最新的努力改善了满足当今应用程序要求的神经网络(NN)加速器的性能,这引起了基于逻辑NN推理的新趋势,该趋势依赖于固定功能组合逻辑。将如此大的布尔函数与许多输入变量和产品项绘制到现场可编程门阵列(FPGA)上的数字信号处理器(DSP)需要一个新颖的框架,考虑到此过程中DSP块的结构和可重构性。本文中提出的方法将固定功能组合逻辑块映射到一组布尔功能,其中与每个功能相对应的布尔操作映射到DSP设备,而不是FPGA上的查找表(LUTS),以利用高性能,DSP块的低潜伏期和并行性。 %本文还提出了一种用于NNS编译和映射的创新设计和优化方法,并利用固定功能组合逻辑与DSP进行了使用高级合成流的FPGA上的DSP。 %我们在几个\ revone {DataSets}上进行的实验评估和选定的NNS与使用DSP的基于ART FPGA的NN加速器相比,根据推理潜伏期和输出准确性,证明了我们框架的可比性。
translated by 谷歌翻译
神经网络(NNS)的重要性和复杂性正在增长。神经网络的性能(和能源效率)可以通过计算或内存资源约束。在内存阵列附近或内部放置计算的内存处理(PIM)范式是加速内存绑定的NNS的可行解决方案。但是,PIM体系结构的形式各不相同,其中不同的PIM方法导致不同的权衡。我们的目标是分析基于NN的性能和能源效率的基于DRAM的PIM架构。为此,我们分析了三个最先进的PIM架构:(1)UPMEM,将处理器和DRAM阵列集成到一个2D芯片中; (2)Mensa,是针对边缘设备量身定制的基于3D堆栈的PIM架构; (3)Simdram,它使用DRAM的模拟原理来执行位序列操作。我们的分析表明,PIM极大地受益于内存的NNS:(1)UPMEM在GPU需要内存过度按要求的通用矩阵 - 矢量乘数内核时提供23x高端GPU的性能; (2)Mensa在Google Edge TPU上提高了3.0倍和3.1倍的能源效率和吞吐量,用于24个Google Edge NN型号; (3)SIMDRAM在三个二进制NNS中以16.7倍/1.4倍的速度优于CPU/GPU。我们得出的结论是,由于固有的建筑设计选择,NN模型的理想PIM体系结构取决于模型的独特属性。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms -such as mobile phones, embedded devices, and accelerators (e.g., FPGAs, ASICs) -requires significant manual effort. We propose TVM, a compiler that exposes graph-level and operator-level optimizations to provide performance portability to deep learning workloads across diverse hardware back-ends. TVM solves optimization challenges specific to deep learning, such as high-level operator fusion, mapping to arbitrary hardware primitives, and memory latency hiding. It also automates optimization of low-level programs to hardware characteristics by employing a novel, learning-based cost modeling method for rapid exploration of code optimizations. Experimental results show that TVM delivers performance across hardware back-ends that are competitive with state-ofthe-art, hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPUs. We also demonstrate TVM's ability to target new accelerator back-ends, such as the FPGA-based generic deep learning accelerator.The system is open sourced and in production use inside several major companies.
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either explore a limited search space or employ suboptimal exploration techniques for simultaneous design decision investigations of the ML model and the accelerator. Furthermore, training the ML model and simulating the accelerator performance is computationally expensive. To address these limitations, this work proposes a novel neural architecture and hardware accelerator co-design framework, called CODEBench. It is composed of two new benchmarking sub-frameworks, CNNBench and AccelBench, which explore expanded design spaces of convolutional neural networks (CNNs) and CNN accelerators. CNNBench leverages an advanced search technique, BOSHNAS, to efficiently train a neural heteroscedastic surrogate model to converge to an optimal CNN architecture by employing second-order gradients. AccelBench performs cycle-accurate simulations for a diverse set of accelerator architectures in a vast design space. With the proposed co-design method, called BOSHCODE, our best CNN-accelerator pair achieves 1.4% higher accuracy on the CIFAR-10 dataset compared to the state-of-the-art pair, while enabling 59.1% lower latency and 60.8% lower energy consumption. On the ImageNet dataset, it achieves 3.7% higher Top1 accuracy at 43.8% lower latency and 11.2% lower energy consumption. CODEBench outperforms the state-of-the-art framework, i.e., Auto-NBA, by achieving 1.5% higher accuracy and 34.7x higher throughput, while enabling 11.0x lower energy-delay product (EDP) and 4.0x lower chip area on CIFAR-10.
translated by 谷歌翻译
高吞吐量数据处理应用的高效硬件加速器设计,例如深度神经网络,是计算机架构设计中有挑战性的任务。在这方面,高级合成(HLS)作为快速原型设计的解决方案,从应用程序计算流程的行为描述开始。这种设计空间探索(DSE)旨在识别帕累托最佳的合成配置,其穷举搜索由于设计空间维度和合成过程的禁止计算成本而往往不可行。在该框架内,我们通过提出在文献中,有效和有效地解决了设计问题图形神经网络,该神经网络共同预测了合成的行为规范的加速性能和硬件成本给出了优化指令。考虑到性能和成本估计,学习模型可用于通过引导DSE来快速接近帕累托曲线。所提出的方法优于传统的HLS驱动DSE方法,通过考虑任意长度的计算机程序和输入的不变特性。我们提出了一种新颖的混合控制和数据流图表示,可以在不同硬件加速器的规格上培训图形神经网络;该方法自然地转移到解除数据处理应用程序。此外,我们表明我们的方法实现了与常用模拟器的预测准确性相当,而无需访问HLS编译器和目标FPGA的分析模型,同时是更快的数量级。最后,通过微调来自新目标域的少量样本,可以在未开发的配置空间中解放所学习的表示。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
计算机架构和系统已优化了很长时间,以便高效执行机器学习(ML)模型。现在,是时候重新考虑ML和系统之间的关系,并让ML转换计算机架构和系统的设计方式。这有一个双重含义:改善设计师的生产力,以及完成良性周期。在这篇论文中,我们对应用ML进行计算机架构和系统设计的工作进行了全面的审查。首先,我们考虑ML技术在架构/系统设计中的典型作用,即快速预测建模或设计方法,我们执行高级分类学。然后,我们总结了通过ML技术解决的计算机架构/系统设计中的常见问题,并且所用典型的ML技术来解决它们中的每一个。除了在狭义中强调计算机架构外,我们采用数据中心可被认为是仓库规模计算机的概念;粗略的计算机系统中提供粗略讨论,例如代码生成和编译器;我们还注意ML技术如何帮助和改造设计自动化。我们进一步提供了对机会和潜在方向的未来愿景,并设想应用ML的计算机架构和系统将在社区中蓬勃发展。
translated by 谷歌翻译
近年来,已经提出了许多加速器来有效处理稀疏张量代数应用(例如稀疏的神经网络)。但是,这些建议是大而多样化的设计空间中的单个点。缺乏对这些稀疏张量加速器的系统描述和建模支持阻碍了硬件设计人员无法高效,有效的设计空间探索。本文首先提出了统一的分类法,以系统地描述各种稀疏张量加速器的设计空间。基于提议的分类法,它引入了Sparseloop,这是第一个快速,准确,灵活的分析建模框架,以实现稀疏张量加速器的早期评估和探索。 Sparseloop理解了一系列体系结构规格,包括各种数据流和稀疏加速功能(例如,消除基于零的计算)。使用这些规格,Sparseloop评估了设计的加工速度和能源效率,同时考虑了使用的数据流以及使用随机张量密度模型的稀疏加速度功能引入的数据移动和计算。在代表性的加速器和工作负载中,Sparseloop的建模速度比周期级模拟快2000倍,保持相对性能趋势,并达到0.1%至8%的平均误差。通过案例研究,我们证明了Sparseloop有助于揭示设计稀疏张量加速器的重要见解的能力(例如,共同设计正交设计方面很重要)。
translated by 谷歌翻译
机器学习(ML)的广泛部署正在引起严重的关注,以保护为收集培训数据做出贡献的用户的隐私。差异隐私(DP)作为保护保护的实用标准,在行业中迅速获得势头。尽管DP的重要性,但是在计算机系统社区中,几乎没有探索这种新兴ML算法对系统设计的影响。在这项工作中,我们对名为DP-SGD的最先进的私人ML培训算法进行了详细的工作量表征。我们发现了DP-SGD的几种独特属性(例如,其高内存能力和计算需求与非私人ML),从而引起其关键瓶颈。基于我们的分析,我们提出了一个名为Diva的差异私有ML的加速器,该加速器在计算利用率方面具有显着改善,从而导致2.6倍的能量效率与常规收缩期阵列。
translated by 谷歌翻译
深度神经网络(DNN)模型和数据集的快速增长大小引起了各种分布策略,如数据,张量模型,管道并行和其混合组合。这些策略中的每一个都提供自己的权衡,并在不同的模型和硬件拓扑上展示最佳性能。选择给定设置的最佳策略集是具有挑战性的,因为搜索空间组合增长,并且在群集上调试和测试昂贵。在这项工作中,我们提出了DISTIR,对于分布式DNN计算,这是针对有效分析而定制的分布式DNN计算的表达中间表示,例如模拟。这使得能够自动识别顶级执行策略,而无需在物理硬件上执行。与事先工作不同,Distir自然可以表达许多分发策略,包括管道并行性,具有任意时间表。我们对MLP培训和GPT-2推理模型的评估演示了DISTIR及其模拟器启用快速网格在跨越1000多种配置的复杂分配空间上搜索,以某些制度的数量级递减优化时间。
translated by 谷歌翻译
人工神经网络的扩展不断增加,在超功率边缘设备上不会停止。但是,这些通常具有很高的计算需求,并且需要专门的硬件加速器,以确保设计达到功率和性能限制。神经网络的手动优化以及相应的硬件加速器可能非常具有挑战性。本文介绍了Hannah(硬件加速器和神经网络搜索),该框架是针对深神经网络和硬件加速器的自动化和组合的硬件/软件共同设计,用于资源和功率受限的边缘设备。优化方法使用基于进化的搜索算法,一种神经网络模板技术以及可配置的Ultratrail硬件加速器模板的分析KPI模型,以找到优化的神经网络和加速器配置。我们证明,汉娜(Hannah)可以找到适合不同音频分类任务的功耗和高精度的合适神经网络,例如单级唤醒单词检测,多级关键字检测和语音活动检测,这些操作优于相关工作。
translated by 谷歌翻译
在小型电池约束的物流设备上部署现代TinyML任务需要高计算能效。使用非易失性存储器(NVM)的模拟内存计算(IMC)承诺在深神经网络(DNN)推理中的主要效率提高,并用作DNN权重的片上存储器存储器。然而,在系统级别尚未完全理解IMC的功能灵活性限制及其对性能,能量和面积效率的影响。为了目标实际的端到端的IOT应用程序,IMC阵列必须括在异构可编程系统中,引入我们旨在解决这项工作的新系统级挑战。我们介绍了一个非均相紧密的聚类架构,整合了8个RISC-V核心,内存计算加速器(IMA)和数字加速器。我们在高度异构的工作负载上基准测试,例如来自MobileNetv2的瓶颈层,显示出11.5倍的性能和9.5倍的能效改进,而在核心上高度优化并行执行相比。此外,我们通过将我们的异构架构缩放到多阵列加速器,探讨了在IMC阵列资源方面对全移动级DNN(MobileNetv2)的端到端推断的要求。我们的结果表明,我们的解决方案在MobileNetv2的端到端推断上,在执行延迟方面比现有的可编程架构更好,比最先进的异构解决方案更好的数量级集成内存计算模拟核心。
translated by 谷歌翻译
最近,图形卷积网络(GCNS)已成为用于分析非欧几里德图数据的最先进的算法。然而,实现有效的GCN训练,特别是在大图中挑战。原因是许多折叠的原因:1)GCN训练引发了大量的内存占用。大图中的全批量培训甚至需要数百到数千千兆字节的内存,以缓冲中间数据进行反向传播。 2)GCN培训涉及内存密集型数据减少和计算密集型功能/渐变更新操作。这种异构性质挑战当前的CPU / GPU平台。 3)图形的不规则性和复杂的训练数据流共同增加了提高GCN培训系统效率的难度。本文提出了一种混合架构来解决这些挑战的混合架构。具体地,GCNEAR采用基于DIMM的存储系统,提供易于级别的存储器容量。为了匹配异构性质,我们将GCN培训操作分类为内存密集型减少和计算密集型更新操作。然后,我们卸载将操作减少到DIMM NMES,充分利用高聚合的本地带宽。我们采用具有足够计算能力的CAE来处理更新操作。我们进一步提出了几种优化策略来处理GCN任务的不规则,提高GCNEAR的表现。我们还提出了一种多GCNEAR系统来评估GCNEAR的可扩展性。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
为满足商业和科学应用的深度学习的极端计算需求,Dataflow加速器越来越受欢迎。虽然这些“特定于域的”加速器不是完全可编程的CPU和GPU,但它们对数据编程,即数据流和平铺优化来保持不同的灵活性,以提高效率。在设计新的算法和映射方法时,在新硬件上执行目标问题的算法存在若干挑战。以前的作品单独解决了这些挑战。为了解决整体挑战,在这项工作中,我们在流行的MLIR编译基础架构中,我们为一个名为Union的空间加速器提供了HW-SW Co-Design生态系统。我们的框架允许在几种加速器成本模型上探索不同的算法及其映射。联盟还包括一个加速器成本模型和映射器的即插即用库,可以轻松扩展。算法和加速器成本模型通过新颖的映射抽象来连接,该抽象捕获空间加速器的地图空间,该空间加速器可以基于来自硬件,工作负载和映射器的约束来系统地修剪。我们展示了与多个案例研究的社区联盟的价值,该研究将使用不同的映射方案在不同的加速器架构上卸载不同的张量操作(Conv / Gemm / Tensor收缩)。
translated by 谷歌翻译
嵌入式机器学习(ML)系统现在已成为部署ML服务任务的主要平台,预计对于培训ML模型而言非常重要。随之而来的是,在严格的内存约束下,总体高效部署,尤其是低功率和高吞吐量实现的挑战。在这种情况下,与常规SRAM相比,由于其非挥发性,较高的细胞密度和可伸缩性特征,STT-MRAM和SOT-MRAM等非易失性记忆(NVM)技术具有显着优势。虽然先前的工作已经调查了NVM对通用应用的几种架构含义,但在这项工作中,我们提出了DeepNVM ++,这是一个综合框架,用于表征,模型和分析基于NVM的GPU架构中的基于NVM的CACHES,通过结合技术特异性的技术应用程序(DL)应用程序(DL)应用程序。电路级模型和各种DL工作负载的实际内存行为。 DEEPNVM ++依赖于使用常规SRAM和新兴STT-MRAM和SOT-MRAM Technologies实施的最后级别缓存的ISO容量和ISO区域性能和能量模型。在ISO容量的情况下,与常规的SRAM相比,STT-MRAM和SOT-MRAM可提供高达3.8倍和4.7倍的能量延迟产品(EDP)的降低以及2.4倍和2.8倍面积。在ISO-AREA假设下,STT-MRAM和SOT-MRAM可提供高达2.2倍和2.4倍的EDP降低,并且与SRAM相比,分别可容纳2.3倍和3.3倍的缓存能力。我们还执行可伸缩性分析,并表明与大型缓存能力相比,STT-MRAM和SOT-MRAM与SRAM相比实现了EDP的降低。 DEEPNVM ++在STT-/SOT-MRAM技术上进行了证明,可用于DL应用中GPU中最后一级缓存的任何NVM技术的表征,建模和分析。
translated by 谷歌翻译