最近,图形卷积网络(GCNS)已成为用于分析非欧几里德图数据的最先进的算法。然而,实现有效的GCN训练,特别是在大图中挑战。原因是许多折叠的原因:1)GCN训练引发了大量的内存占用。大图中的全批量培训甚至需要数百到数千千兆字节的内存,以缓冲中间数据进行反向传播。 2)GCN培训涉及内存密集型数据减少和计算密集型功能/渐变更新操作。这种异构性质挑战当前的CPU / GPU平台。 3)图形的不规则性和复杂的训练数据流共同增加了提高GCN培训系统效率的难度。本文提出了一种混合架构来解决这些挑战的混合架构。具体地,GCNEAR采用基于DIMM的存储系统,提供易于级别的存储器容量。为了匹配异构性质,我们将GCN培训操作分类为内存密集型减少和计算密集型更新操作。然后,我们卸载将操作减少到DIMM NMES,充分利用高聚合的本地带宽。我们采用具有足够计算能力的CAE来处理更新操作。我们进一步提出了几种优化策略来处理GCN任务的不规则,提高GCNEAR的表现。我们还提出了一种多GCNEAR系统来评估GCNEAR的可扩展性。
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译
Dynamic Graph Neural Networks (DGNNs) have been broadly applied in various real-life applications, such as link prediction and pandemic forecast, to capture both static structural information and temporal characteristics from dynamic graphs. Combining both time-dependent and -independent components, DGNNs manifest substantial parallel computation and data reuse potentials, but suffer from severe memory access inefficiency and data transfer overhead under the canonical one-graph-at-a-time training pattern. To tackle the challenges, we propose PiPAD, a $\underline{\textbf{Pi}}pelined$ and $\underline{\textbf{PA}}rallel$ $\underline{\textbf{D}}GNN$ training framework for the end-to-end performance optimization on GPUs. From both the algorithm and runtime level, PiPAD holistically reconstructs the overall training paradigm from the data organization to computation manner. Capable of processing multiple graph snapshots in parallel, PiPAD eliminates the unnecessary data transmission and alleviates memory access inefficiency to improve the overall performance. Our evaluation across various datasets shows PiPAD achieves $1.22\times$-$9.57\times$ speedup over the state-of-the-art DGNN frameworks on three representative models.
translated by 谷歌翻译
图形神经网络(GNN)由于其独特的能力扩展了机器学习(ML)方法,因此引起了极大的关注,该应用程序广泛定义为具有非结构化数据,尤其是图形。与其他机器学习(ML)方式相比,由于源自图类型的不规则性和异质性,图形神经网络(GNN)的加速度更具挑战性。但是,现有的努力主要集中在处理图形的不规则性上,并且没有研究其异质性。为此,我们提出了H-GCN,PL(可编程逻辑)和AIE(AI引擎)的混合加速器,以利用Xilinx Versal自适应计算加速度平台(ACAPS)的新兴异质性(ACAPS)来实现高表现GNN的确定。特别是,H-GCN根据其固有的异质性将每个图分为三个子图,并分别使用PL和AIE处理它们。为了进一步提高性能,我们探索了AIE的稀疏支持,并开发了一种有效的密度感知方法,以自动将稀疏矩阵矩阵乘法(SPMM)的瓷砖自动映射到收缩张量数阵列上。与最先进的GCN加速器相比,H-GCN平均达到1.1〜2.3倍的速度。
translated by 谷歌翻译
图表卷积网络(GCNS)已成为最先进的图形学习模型。但是,它可以令人难以置于大图数据集的推断GCNS,这会将其应用于大型实际图表并阻碍更深层更复杂的GCN图形的探讨。这是因为真实世界图可能非常大而稀疏。此外,GCN的节点度倾向于遵循幂律分布,因此具有高度不规则的邻接矩阵,导致数据处理和移动中的禁止低效率,从而显着地限制了可实现的GCN加速效率。为此,本文提出了一种GCN算法和加速器协同设计框架被称为GCOD,其在很大程度上可以缓解上述GCN不规则性并提高GCNS推理效率。具体地,在算法级别上,GCOD集成了分割和征服GCN训练策略,该训练策略将图形偏离在本地邻域中的密集或稀疏,而不会影响模型精度,从而导致(主要)的图形邻接矩阵仅仅是两个级别的工作量并享受大部分增强的规律性,从而轻松加速。在硬件水平上,我们进一步开发了一个具有分离发动机的专用双子加速器,以处理每个上述密集和稀疏工作负载,进一步提高整体利用率和加速效率。广泛的实验和消融研究验证了我们的GCOD始终如一地减少了与CPU,GPU和现有技术GCN加速器相比的15286倍,294倍,7.8倍和2.5倍的加速,包括HYGCN和AWB -GCN分别在保持甚至提高任务准确性的同时。
translated by 谷歌翻译
虽然有很多关于图像深度学习的硬件加速研究,但在加速涉及图形的深度学习应用时,有一个相当有利的专注。图的独特特性,例如不规则的内存访问和动态并行性,当算法映射到CPU或GPU时,施加有几个挑战。为了在利用所有可用的稀疏性的同时解决这些挑战,我们提出了一种灵活的架构,称为SPA-GCN,用于加速图形卷积网络(GCN),在图中的深度学习算法中的核心计算单元。该架构专门用于处理许多小图形,因为图表尺寸对设计考虑产生了重大影响。在这种情况下,我们使用SIMGNN是一种基于神经网络的图形匹配算法,作为展示我们架构的有效性的案例研究。实验结果表明,与多核CPU实施和GPU实施相比,SPA-GCN可以提供高速度,显示设计效率。
translated by 谷歌翻译
图形神经网络(GNNS)将深度神经网络(DNN)的成功扩展到非欧几里德图数据,实现了各种任务的接地性能,例如节点分类和图形属性预测。尽管如此,现有系统效率低,培训数十亿节点和GPU的节点和边缘训练大图。主要瓶颈是准备GPU数据的过程 - 子图采样和特征检索。本文提出了一个分布式GNN培训系统的BGL,旨在解决一些关键思想的瓶颈。首先,我们提出了一种动态缓存引擎,以最小化特征检索流量。通过协同设计缓存政策和抽样顺序,我们发现低开销和高缓存命中率的精美斑点。其次,我们改善了曲线图分区算法,以减少子图采样期间的交叉分区通信。最后,仔细资源隔离减少了不同数据预处理阶段之间的争用。关于各种GNN模型和大图数据集的广泛实验表明,BGL平均明显优于现有的GNN训练系统20.68倍。
translated by 谷歌翻译
Graph convolutional neural networks (GCNs) have emerged as a key technology in various application domains where the input data is relational. A unique property of GCNs is that its two primary execution stages, aggregation and combination, exhibit drastically different dataflows. Consequently, prior GCN accelerators tackle this research space by casting the aggregation and combination stages as a series of sparse-dense matrix multiplication. However, prior work frequently suffers from inefficient data movements, leaving significant performance left on the table. We present GROW, a GCN accelerator based on Gustavson's algorithm to architect a row-wise product based sparse-dense GEMM accelerator. GROW co-designs the software/hardware that strikes a balance in locality and parallelism for GCNs, achieving significant energy-efficiency improvements vs. state-of-the-art GCN accelerators.
translated by 谷歌翻译
图形神经网络(GNN)的输入图的大小不断增加,突显了使用多GPU平台的需求。但是,由于计算不平衡和效率较低的通信,现有的多GPU GNN解决方案遭受了劣质性能。为此,我们提出了MGG,这是一种新型的系统设计,可以通过以GPU为中心的软件管道在多GPU平台上加速GNN。 MGG探讨了通过细粒度计算通信管道中隐藏GNN工作负载中远程内存访问延迟的潜力。具体而言,MGG引入了管​​道感知工作负载管理策略和混合数据布局设计,以促进通信局限性重叠。 MGG实现以优化的管道为中心的内核。它包括工作负载交织和基于经经的映射,以进行有效的GPU内核操作管道和专门的内存设计以及优化,以更好地数据访问性能。此外,MGG还结合了轻巧的分析建模和优化启发式方法,以动态提高运行时不同设置的GNN执行性能。全面的实验表明,MGG在各种GNN设置上的最先进的多GPU系统要比最先进的多GPU系统:平均比具有统一虚拟内存设计的多GPU系统快3.65倍,平均比DGCL框架快7.38倍。
translated by 谷歌翻译
图表卷积网络(GCNS)已经引入有效地处理非欧几里德图数据。但是,GCNS在计算和内存访问中产生了大量的不规则性,这可以防止有效地利用传统的神经网络加速器。此外,现有的专用GCN加速器需要高内存卷,并且难以实现到资源有限的边缘设备上。在这项工作中,我们提出了LW-GCN,一种基于轻量级的FPGA的加速器,具有软件 - 硬件共同设计的过程,可以在GCN推理中解决计算和存储器访问中的不规则性。 LW-GCN将主GCN操作分解为稀疏密集的矩阵乘法(SDMM)和致密矩阵乘法(DMM)。我们提出了一种新颖的压缩格式来平衡PE的工作量并防止数据危险。此外,我们应用数据量化和工作负载折叠,并将GCN推理的SDMM和DMM映射到资源有限硬件上的统一架构上。 GCN和Graphsage的评估在Xilinx Kintex-7 FPGA中进行了三个流行的数据集。与现有CPU,GPU和最先进的FPGA的加速器相比,LW-GCN可将延迟缩短高达60倍,12倍,1.7倍,并分别将功率效率提高至912倍。,511x和3.87倍。此外,与NVIDIA最新的GPU Jetson Xavier NX相比,LW-GCN分别实现了32倍和84倍的加速和节能。
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译
最近,Graph神经网络(GNNS)已成为聚光灯作为强大的工具,可以有效地在图形结构化数据上执行各种推理任务。随着现实图表的大小继续扩展,GNN训练系统面临可扩展性挑战。分布式培训是一种流行的方法,可以通过扩展CPU节点来应对这一挑战。但是,对基于磁盘的GNN培训的关注不多,该培训可以通过利用NVME SSD等高性能存储设备来以更具成本效益的方式扩展单节点系统。我们观察到,主内存和磁盘之间的数据移动是基于SSD的训练系统中的主要瓶颈,并且常规的GNN训练管道是不错的选择,而无需考虑此开销。因此,我们提出了Ginex,这是第一个基于SSD的GNN训练系统,可以在单台计算机上处​​理数十亿个图形数据集。受到编译器优化的检查员执行模型的启发,Ginex通过分开样品和收集阶段来重组GNN训练管道。这种分离使Ginex能够实现一种可证明的最佳替换算法,即被称为Belady的算法,用于存储器中的Caching特征向量,该算法是I/O访问的主要部分。根据我们对40亿尺度图数据集的评估,Ginex平均比SSD扩展的Pytorch几何得出了2.11倍的训练吞吐量(最大最高2.67倍)。
translated by 谷歌翻译
最近,作为基于图形机器学习的骨干的图形神经网络(GNN)展示了各个域(例如,电子商务)的巨大成功。然而,由于基于高稀疏和不规则的图形操作,GNN的性能通常不令人满意。为此,我们提出,TC-GNN,基于GNN加速框架的第一个GPU张量核心单元(TCU)。核心思想是将“稀疏”GNN计算与“密集”TCU进行调和。具体地,我们对主流GNN计算框架中的稀疏操作进行了深入的分析。我们介绍了一种新颖的稀疏图翻译技术,便于TCU处理稀疏GNN工作量。我们还实现了一个有效的CUDA核心和TCU协作设计,以充分利用GPU资源。我们将TC-GNN与Pytorch框架完全集成,以便于编程。严格的实验在各种GNN型号和数据集设置的最先进的深图库框架上平均显示了1.70倍的加速。
translated by 谷歌翻译
图形神经网络(GNNS)已成为处理机器学习任务的有效方法,它为构建推荐系统带来了一种新方法,其中可以将推荐任务作为用户 - 项目的链接预测问题提出, 。培训基于GNN的推荐系统(GNNRECSYS)在大图上会引起大型内存足迹,很容易超过典型服务器上的DRAM容量。现有的解决方案诉诸分布式子图培训,这是由于动态构建子图和各个子图的大量冗余的高成本而效率低下。新兴的Intel Optane持久记忆使一台机器以可承受的成本具有最多6 TB的存储器,从而使单机器Gnnrecsys训练可行,从而消除了分布式培训中的效率低下。与DRAM相比,将Optane用于Gnnrecsys的一个主要问题是Optane相对较低的带宽。由于其主要的计算内核稀疏且内存访问密集,因此这种限制可能对Gnnrecsys工作量的高性能特别有害。为了了解Optane是否适合Gnnrecsys培训,我们对Gnnrecsys工作负载进行了深入的表征和全面的基准测试研究。我们的基准测试结果表明,经过正确配置后,基于Optane的单机器GNNRECSYS训练优于大幅度的培训,尤其是在处理深度GNN模型时。我们分析了加速度的来源,提供有关如何为GNNRECSYS工作负载配置Optane的指导,并讨论进一步优化的机会。
translated by 谷歌翻译
Training Graph Neural Networks, on graphs containing billions of vertices and edges, at scale using minibatch sampling poses a key challenge: strong-scaling graphs and training examples results in lower compute and higher communication volume and potential performance loss. DistGNN-MB employs a novel Historical Embedding Cache combined with compute-communication overlap to address this challenge. On a 32-node (64-socket) cluster of $3^{rd}$ generation Intel Xeon Scalable Processors with 36 cores per socket, DistGNN-MB trains 3-layer GraphSAGE and GAT models on OGBN-Papers100M to convergence with epoch times of 2 seconds and 4.9 seconds, respectively, on 32 compute nodes. At this scale, DistGNN-MB trains GraphSAGE 5.2x faster than the widely-used DistDGL. DistGNN-MB trains GraphSAGE and GAT 10x and 17.2x faster, respectively, as compute nodes scale from 2 to 32.
translated by 谷歌翻译
图形神经网络(GNN)已被证明是分析非欧国人图数据的强大工具。但是,缺乏有效的分布图学习(GL)系统极大地阻碍了GNN的应用,尤其是当图形大且GNN相对深时。本文中,我们提出了GraphTheta,这是一种以顶点为中心的图形编程模型实现的新颖分布式和可扩展的GL系统。 GraphTheta是第一个基于分布式图处理的GL系统,其神经网络运算符以用户定义的功能实现。该系统支持多种培训策略,并在分布式(虚拟)机器上启用高度可扩展的大图学习。为了促进图形卷积实现,GraphTheta提出了一个名为NN-Tgar的新的GL抽象,以弥合图形处理和图形深度学习之间的差距。提出了分布式图引擎,以通过混合平行执行进行随机梯度下降优化。此外,除了全球批次和迷你批次外,我们还为新的集群批次培训策略提供了支持。我们使用许多网络大小的数据集评估GraphTheta,范围从小,适度到大规模。实验结果表明,GraphTheta可以很好地扩展到1,024名工人,用于培训内部开发的GNN,该工业尺度的Aripay数据集为14亿个节点和41亿个属性边缘,并带有CPU虚拟机(Dockers)群的小群。 (5 $ \ sim $ 12GB)。此外,GraphTheta比最先进的GNN实现获得了可比或更好的预测结果,证明其学习GNN和现有框架的能力,并且可以超过多达$ 2.02 \ tims $ $ 2.02 \ times $,具有更好的可扩展性。据我们所知,这项工作介绍了文献中最大的边缘属性GNN学习任务。
translated by 谷歌翻译
神经网络(NNS)的重要性和复杂性正在增长。神经网络的性能(和能源效率)可以通过计算或内存资源约束。在内存阵列附近或内部放置计算的内存处理(PIM)范式是加速内存绑定的NNS的可行解决方案。但是,PIM体系结构的形式各不相同,其中不同的PIM方法导致不同的权衡。我们的目标是分析基于NN的性能和能源效率的基于DRAM的PIM架构。为此,我们分析了三个最先进的PIM架构:(1)UPMEM,将处理器和DRAM阵列集成到一个2D芯片中; (2)Mensa,是针对边缘设备量身定制的基于3D堆栈的PIM架构; (3)Simdram,它使用DRAM的模拟原理来执行位序列操作。我们的分析表明,PIM极大地受益于内存的NNS:(1)UPMEM在GPU需要内存过度按要求的通用矩阵 - 矢量乘数内核时提供23x高端GPU的性能; (2)Mensa在Google Edge TPU上提高了3.0倍和3.1倍的能源效率和吞吐量,用于24个Google Edge NN型号; (3)SIMDRAM在三个二进制NNS中以16.7倍/1.4倍的速度优于CPU/GPU。我们得出的结论是,由于固有的建筑设计选择,NN模型的理想PIM体系结构取决于模型的独特属性。
translated by 谷歌翻译
Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs. The large data sizes of graphs and their vertex features make scalable training algorithms and distributed memory systems necessary. Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges. We propose a highly parallel training algorithm that scales to large processor counts. In our solution, the large adjacency and vertex-feature matrices are partitioned among processors. We exploit the vertex-partitioning of the graph to use non-blocking point-to-point communication operations between processors for better scalability. To further minimize the parallelization overheads, we introduce a sparse matrix partitioning scheme based on a hypergraph partitioning model for full-batch training. We also propose a novel stochastic hypergraph model to encode the expected communication volume in mini-batch training. We show the merits of the hypergraph model, previously unexplored for GCN training, over the standard graph partitioning model which does not accurately encode the communication costs. Experiments performed on real-world graph datasets demonstrate that the proposed algorithms achieve considerable speedups over alternative solutions. The optimizations achieved on communication costs become even more pronounced at high scalability with many processors. The performance benefits are preserved in deeper GCNs having more layers as well as on billion-scale graphs.
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power.Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120× energy saving; Exploiting sparsity saves 10×; Weight sharing gives 8×; Skipping zero activations from ReLU saves another 3×. Evaluated on nine DNN benchmarks, EIE is 189× and 13× faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102 GOPS/s working directly on a compressed network, corresponding to 3 TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88×10 4 frames/sec with a power dissipation of only 600mW. It is 24,000× and 3,400× more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9×, 19× and 3× better throughput, energy efficiency and area efficiency.
translated by 谷歌翻译