图表卷积网络(GCNS)已经引入有效地处理非欧几里德图数据。但是,GCNS在计算和内存访问中产生了大量的不规则性,这可以防止有效地利用传统的神经网络加速器。此外,现有的专用GCN加速器需要高内存卷,并且难以实现到资源有限的边缘设备上。在这项工作中,我们提出了LW-GCN,一种基于轻量级的FPGA的加速器,具有软件 - 硬件共同设计的过程,可以在GCN推理中解决计算和存储器访问中的不规则性。 LW-GCN将主GCN操作分解为稀疏密集的矩阵乘法(SDMM)和致密矩阵乘法(DMM)。我们提出了一种新颖的压缩格式来平衡PE的工作量并防止数据危险。此外,我们应用数据量化和工作负载折叠,并将GCN推理的SDMM和DMM映射到资源有限硬件上的统一架构上。 GCN和Graphsage的评估在Xilinx Kintex-7 FPGA中进行了三个流行的数据集。与现有CPU,GPU和最先进的FPGA的加速器相比,LW-GCN可将延迟缩短高达60倍,12倍,1.7倍,并分别将功率效率提高至912倍。,511x和3.87倍。此外,与NVIDIA最新的GPU Jetson Xavier NX相比,LW-GCN分别实现了32倍和84倍的加速和节能。
translated by 谷歌翻译
图表卷积网络(GCNS)已成为最先进的图形学习模型。但是,它可以令人难以置于大图数据集的推断GCNS,这会将其应用于大型实际图表并阻碍更深层更复杂的GCN图形的探讨。这是因为真实世界图可能非常大而稀疏。此外,GCN的节点度倾向于遵循幂律分布,因此具有高度不规则的邻接矩阵,导致数据处理和移动中的禁止低效率,从而显着地限制了可实现的GCN加速效率。为此,本文提出了一种GCN算法和加速器协同设计框架被称为GCOD,其在很大程度上可以缓解上述GCN不规则性并提高GCNS推理效率。具体地,在算法级别上,GCOD集成了分割和征服GCN训练策略,该训练策略将图形偏离在本地邻域中的密集或稀疏,而不会影响模型精度,从而导致(主要)的图形邻接矩阵仅仅是两个级别的工作量并享受大部分增强的规律性,从而轻松加速。在硬件水平上,我们进一步开发了一个具有分离发动机的专用双子加速器,以处理每个上述密集和稀疏工作负载,进一步提高整体利用率和加速效率。广泛的实验和消融研究验证了我们的GCOD始终如一地减少了与CPU,GPU和现有技术GCN加速器相比的15286倍,294倍,7.8倍和2.5倍的加速,包括HYGCN和AWB -GCN分别在保持甚至提高任务准确性的同时。
translated by 谷歌翻译
虽然有很多关于图像深度学习的硬件加速研究,但在加速涉及图形的深度学习应用时,有一个相当有利的专注。图的独特特性,例如不规则的内存访问和动态并行性,当算法映射到CPU或GPU时,施加有几个挑战。为了在利用所有可用的稀疏性的同时解决这些挑战,我们提出了一种灵活的架构,称为SPA-GCN,用于加速图形卷积网络(GCN),在图中的深度学习算法中的核心计算单元。该架构专门用于处理许多小图形,因为图表尺寸对设计考虑产生了重大影响。在这种情况下,我们使用SIMGNN是一种基于神经网络的图形匹配算法,作为展示我们架构的有效性的案例研究。实验结果表明,与多核CPU实施和GPU实施相比,SPA-GCN可以提供高速度,显示设计效率。
translated by 谷歌翻译
图形神经网络(GNN)由于其独特的能力扩展了机器学习(ML)方法,因此引起了极大的关注,该应用程序广泛定义为具有非结构化数据,尤其是图形。与其他机器学习(ML)方式相比,由于源自图类型的不规则性和异质性,图形神经网络(GNN)的加速度更具挑战性。但是,现有的努力主要集中在处理图形的不规则性上,并且没有研究其异质性。为此,我们提出了H-GCN,PL(可编程逻辑)和AIE(AI引擎)的混合加速器,以利用Xilinx Versal自适应计算加速度平台(ACAPS)的新兴异质性(ACAPS)来实现高表现GNN的确定。特别是,H-GCN根据其固有的异质性将每个图分为三个子图,并分别使用PL和AIE处理它们。为了进一步提高性能,我们探索了AIE的稀疏支持,并开发了一种有效的密度感知方法,以自动将稀疏矩阵矩阵乘法(SPMM)的瓷砖自动映射到收缩张量数阵列上。与最先进的GCN加速器相比,H-GCN平均达到1.1〜2.3倍的速度。
translated by 谷歌翻译
Graph convolutional neural networks (GCNs) have emerged as a key technology in various application domains where the input data is relational. A unique property of GCNs is that its two primary execution stages, aggregation and combination, exhibit drastically different dataflows. Consequently, prior GCN accelerators tackle this research space by casting the aggregation and combination stages as a series of sparse-dense matrix multiplication. However, prior work frequently suffers from inefficient data movements, leaving significant performance left on the table. We present GROW, a GCN accelerator based on Gustavson's algorithm to architect a row-wise product based sparse-dense GEMM accelerator. GROW co-designs the software/hardware that strikes a balance in locality and parallelism for GCNs, achieving significant energy-efficiency improvements vs. state-of-the-art GCN accelerators.
translated by 谷歌翻译
这项工作提出了专门针对粒子探测器的低潜伏期图神经网络(GNN)设计的新型可重构体系结构。加速粒子探测器的GNN是具有挑战性的,因为它需要次微秒延迟才能在CERN大型强子撞机实验的级别1触发器中部署网络以进行在线事件选择。本文提出了一种自定义代码转换,并在基于互动网络的GNN中使用完全连接的图表中的矩阵乘法操作降低了强度,从而避免了昂贵的乘法。它利用了稀疏模式以及二进制邻接矩阵,并避免了不规则的内存访问,从而降低了延迟和硬件效率的提高。此外,我们引入了一种基于外部产品的基质乘法方法,该方法通过降低潜伏期设计的强度降低来增强。此外,引入了融合步骤,以进一步降低设计延迟。此外,提出了GNN特异性算法 - 硬件共同设计方法,该方法不仅找到了具有更好延迟的设计,而且在给定的延迟约束下发现了高精度的设计。最后,已经设计和开源了此低延迟GNN硬件体系结构的可自定义模板,该模板可以使用高级合成工具来生成低延迟的FPGA设计,并有效地利用资源。评估结果表明,我们的FPGA实施速度高24倍,并且消耗的功率比GPU实施少45倍。与我们以前的FPGA实施相比,这项工作的延迟降低了6.51至16.7倍。此外,我们的FPGA设计的延迟足以使GNN在亚微秒,实时撞机触发器系统中部署,从而使其能够从提高的精度中受益。
translated by 谷歌翻译
State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power.Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120× energy saving; Exploiting sparsity saves 10×; Weight sharing gives 8×; Skipping zero activations from ReLU saves another 3×. Evaluated on nine DNN benchmarks, EIE is 189× and 13× faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102 GOPS/s working directly on a compressed network, corresponding to 3 TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88×10 4 frames/sec with a power dissipation of only 600mW. It is 24,000× and 3,400× more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9×, 19× and 3× better throughput, energy efficiency and area efficiency.
translated by 谷歌翻译
在深度学习中,变压器一直是必不可少的主食。但是,对于现实生活中的应用程序,由于模型的巨大参数和操作,部署有效的变压器非常具有挑战性。为了减轻这种负担,利用稀疏是加速变压器的有效方法。新出现的Ampere GPU利用2:4的稀疏模式来实现模型加速度,而在部署模型时,它几乎无法满足各种算法和硬件约束。相比之下,我们提出了一个算法 - 铁软件合作的框架,以灵活有效地加速变压器,通过使用一般的N:M稀疏模式。 (1)从算法的角度来看,我们提出了一种稀疏性遗传机制以及一种遗传的动态修剪(IDP)方法,以迅速获得一系列N:M稀疏候选变压器。进一步提出了模型压缩方案,以显着减少部署的存储需求。 (2)从硬件的角度来看,我们提出了一种灵活,有效的硬件体系结构,即STA,以在部署N:M稀疏变压器时达到显着加速。 STA不仅具有具有较高计算效率的稀疏密度和致密矩阵乘法的计算引擎,而且还具有可扩展的软模块,从而消除了中级外芯片外数据通信的延迟。实验结果表明,与其他使用IDP生成的其他方法相比,n:m稀疏变压器的准确性平均提高了6.7%。此外,与Intel I9-9900X和NVIDIA RTX 2080 TI相比,STA可以达到14.47倍和11.33倍的速度,并且比最先进的基于FPGA的加速器对变形金刚的最先进的推断速度可以快2.00-19.47倍。
translated by 谷歌翻译
最近,图形卷积网络(GCNS)已成为用于分析非欧几里德图数据的最先进的算法。然而,实现有效的GCN训练,特别是在大图中挑战。原因是许多折叠的原因:1)GCN训练引发了大量的内存占用。大图中的全批量培训甚至需要数百到数千千兆字节的内存,以缓冲中间数据进行反向传播。 2)GCN培训涉及内存密集型数据减少和计算密集型功能/渐变更新操作。这种异构性质挑战当前的CPU / GPU平台。 3)图形的不规则性和复杂的训练数据流共同增加了提高GCN培训系统效率的难度。本文提出了一种混合架构来解决这些挑战的混合架构。具体地,GCNEAR采用基于DIMM的存储系统,提供易于级别的存储器容量。为了匹配异构性质,我们将GCN培训操作分类为内存密集型减少和计算密集型更新操作。然后,我们卸载将操作减少到DIMM NMES,充分利用高聚合的本地带宽。我们采用具有足够计算能力的CAE来处理更新操作。我们进一步提出了几种优化策略来处理GCN任务的不规则,提高GCNEAR的表现。我们还提出了一种多GCNEAR系统来评估GCNEAR的可扩展性。
translated by 谷歌翻译
稀疏卷积神经网络(CNNS)在过去几年中获得了显着的牵引力,因为与其致密的对应物相比,稀疏的CNNS可以大大降低模型尺寸和计算。稀疏的CNN经常引入层形状和尺寸的变化,这可以防止密集的加速器在稀疏的CNN模型上执行良好。最近提出的稀疏加速器,如SCNN,Eyeriss V2和Sparten,积极利用双面或全稀稀物质,即重量和激活的稀疏性,用于性能收益。然而,这些加速器具有低效的微架构,其限制了它们的性能,而不对非单位步幅卷积和完全连接(Fc)层的支持,或者遭受系统负荷不平衡的大规模遭受。为了规避这些问题并支持稀疏和密集的模型,我们提出了幻影,多线程,动态和灵活的神经计算核心。 Phantom使用稀疏二进制掩码表示,以主动寻求稀疏计算,并动态调度其计算线程以最大化线程利用率和吞吐量。我们还生成了幻象神经计算核心的二维(2D)网格体系结构,我们将其称为Phantom-2D加速器,并提出了一种支持CNN的所有层的新型数据流,包括单位和非单位步幅卷积,和fc层。此外,Phantom-2D使用双级负载平衡策略来最小化计算空闲,从而进一步提高硬件利用率。为了向不同类型的图层显示支持,我们评估VGG16和MobileNet上的幻影架构的性能。我们的模拟表明,Phantom-2D加速器分别达到了12倍,4.1 X,1.98x和2.36倍,超密架构,SCNN,Sparten和Eyeriss V2的性能增益。
translated by 谷歌翻译
Dynamic Graph Neural Networks (DGNNs) have been broadly applied in various real-life applications, such as link prediction and pandemic forecast, to capture both static structural information and temporal characteristics from dynamic graphs. Combining both time-dependent and -independent components, DGNNs manifest substantial parallel computation and data reuse potentials, but suffer from severe memory access inefficiency and data transfer overhead under the canonical one-graph-at-a-time training pattern. To tackle the challenges, we propose PiPAD, a $\underline{\textbf{Pi}}pelined$ and $\underline{\textbf{PA}}rallel$ $\underline{\textbf{D}}GNN$ training framework for the end-to-end performance optimization on GPUs. From both the algorithm and runtime level, PiPAD holistically reconstructs the overall training paradigm from the data organization to computation manner. Capable of processing multiple graph snapshots in parallel, PiPAD eliminates the unnecessary data transmission and alleviates memory access inefficiency to improve the overall performance. Our evaluation across various datasets shows PiPAD achieves $1.22\times$-$9.57\times$ speedup over the state-of-the-art DGNN frameworks on three representative models.
translated by 谷歌翻译
原则上,稀疏的神经网络应该比传统的密集网络更有效。大脑中的神经元表现出两种类型的稀疏性;它们稀疏地相互连接和稀疏活跃。当组合时,这两种类型的稀疏性,称为重量稀疏性和激活稀疏性,提出了通过两个数量级来降低神经网络的计算成本。尽管存在这种潜力,但今天的神经网络只使用重量稀疏提供适度的性能益处,因为传统的计算硬件无法有效地处理稀疏网络。在本文中,我们引入了互补稀疏性,这是一种显着提高现有硬件对双稀疏网络性能的新技术。我们证明我们可以实现高性能运行的重量稀疏网络,我们可以通过结合激活稀疏性来乘以这些加速。采用互补稀疏性,我们显示出对FPGA的推断的吞吐量和能效提高了100倍。我们分析了典型的商业卷积网络等各种内核的可扩展性和资源权衡,例如Resnet-50和MobileNetv2。我们的互补稀疏性的结果表明,重量加激活稀疏性可以是有效的缩放未来AI模型的有效组合。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
最近,作为基于图形机器学习的骨干的图形神经网络(GNN)展示了各个域(例如,电子商务)的巨大成功。然而,由于基于高稀疏和不规则的图形操作,GNN的性能通常不令人满意。为此,我们提出,TC-GNN,基于GNN加速框架的第一个GPU张量核心单元(TCU)。核心思想是将“稀疏”GNN计算与“密集”TCU进行调和。具体地,我们对主流GNN计算框架中的稀疏操作进行了深入的分析。我们介绍了一种新颖的稀疏图翻译技术,便于TCU处理稀疏GNN工作量。我们还实现了一个有效的CUDA核心和TCU协作设计,以充分利用GPU资源。我们将TC-GNN与Pytorch框架完全集成,以便于编程。严格的实验在各种GNN型号和数据集设置的最先进的深图库框架上平均显示了1.70倍的加速。
translated by 谷歌翻译
近年来,已经提出了许多加速器来有效处理稀疏张量代数应用(例如稀疏的神经网络)。但是,这些建议是大而多样化的设计空间中的单个点。缺乏对这些稀疏张量加速器的系统描述和建模支持阻碍了硬件设计人员无法高效,有效的设计空间探索。本文首先提出了统一的分类法,以系统地描述各种稀疏张量加速器的设计空间。基于提议的分类法,它引入了Sparseloop,这是第一个快速,准确,灵活的分析建模框架,以实现稀疏张量加速器的早期评估和探索。 Sparseloop理解了一系列体系结构规格,包括各种数据流和稀疏加速功能(例如,消除基于零的计算)。使用这些规格,Sparseloop评估了设计的加工速度和能源效率,同时考虑了使用的数据流以及使用随机张量密度模型的稀疏加速度功能引入的数据移动和计算。在代表性的加速器和工作负载中,Sparseloop的建模速度比周期级模拟快2000倍,保持相对性能趋势,并达到0.1%至8%的平均误差。通过案例研究,我们证明了Sparseloop有助于揭示设计稀疏张量加速器的重要见解的能力(例如,共同设计正交设计方面很重要)。
translated by 谷歌翻译
利用稀疏性是加速在移动设备上的量化卷积神经网络(CNN)推断的关键技术。现有稀疏的CNN加速器主要利用无结构性稀疏性并实现显着的加速。然而,由于无界,很大程度上不可预测的稀疏模式,利用非结构化稀疏性需要复杂的硬件设计,具有显着的能量和面积开销,这对能量和区域效率至关重要的移动/ IOT推理场景特别有害。我们建议利用结构化的稀疏性,更具体地,更密集地绑定块(DBB)稀疏性,用于重量和激活。 DBB块张于每个块的最大非零数。因此,DBB暴露静态可预测的稀疏模式,使瘦稀疏性利用硬件能够。我们提出了新的硬件基元,以分别为(静态)权重和(动态)激活的DBB稀疏性,具有非常低的开销。建立在基元的顶部,我们描述了一种基于收缩阵列的CNN加速器的S2TA,可利用联合重量和激活DBB稀疏性和传统的收缩系统阵列上不可用的数据重用的新维度。与具有零值时钟门控的完全阵列的强基线相比,16NM中的S2TA达到超过2倍的加速和能量减少,超过五个流行的CNN基准。与近期的非收缩稀疏加速器相比,Eyeriss V2(65nm)和Sparten(45nm),S2TA在65nm中使用约2.2倍和3.1倍的每次推断的能量较少。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
Vision Transformers (ViTs) have achieved state-of-the-art performance on various vision tasks. However, ViTs' self-attention module is still arguably a major bottleneck, limiting their achievable hardware efficiency. Meanwhile, existing accelerators dedicated to NLP Transformers are not optimal for ViTs. This is because there is a large difference between ViTs and NLP Transformers: ViTs have a relatively fixed number of input tokens, whose attention maps can be pruned by up to 90% even with fixed sparse patterns; while NLP Transformers need to handle input sequences of varying numbers of tokens and rely on on-the-fly predictions of dynamic sparse attention patterns for each input to achieve a decent sparsity (e.g., >=50%). To this end, we propose a dedicated algorithm and accelerator co-design framework dubbed ViTCoD for accelerating ViTs. Specifically, on the algorithm level, ViTCoD prunes and polarizes the attention maps to have either denser or sparser fixed patterns for regularizing two levels of workloads without hurting the accuracy, largely reducing the attention computations while leaving room for alleviating the remaining dominant data movements; on top of that, we further integrate a lightweight and learnable auto-encoder module to enable trading the dominant high-cost data movements for lower-cost computations. On the hardware level, we develop a dedicated accelerator to simultaneously coordinate the enforced denser/sparser workloads and encoder/decoder engines for boosted hardware utilization. Extensive experiments and ablation studies validate that ViTCoD largely reduces the dominant data movement costs, achieving speedups of up to 235.3x, 142.9x, 86.0x, 10.1x, and 6.8x over general computing platforms CPUs, EdgeGPUs, GPUs, and prior-art Transformer accelerators SpAtten and Sanger under an attention sparsity of 90%, respectively.
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译