Accurate segmentation of live cell images has broad applications in clinical and research contexts. Deep learning methods have been able to perform cell segmentations with high accuracy; however developing machine learning models to do this requires access to high fidelity images of live cells. This is often not available due to resource constraints like limited accessibility to high performance microscopes or due to the nature of the studied organisms. Segmentation on low resolution images of live cells is a difficult task. This paper proposes a method to perform live cell segmentation with low resolution images by performing super-resolution as a pre-processing step in the segmentation pipeline.
translated by 谷歌翻译
在本文中,我们设计了一种基于生成的对抗网络(GAN)的解决方案,用于视网膜层的光学相干断层扫描(OCT)扫描的超分辨率和分割。 OCT已被确定为成像的一种非侵入性和廉价的模态,可发现潜在的生物标志物,以诊断和进展神经退行性疾病,例如阿尔茨海默氏病(AD)。当前的假设假设在OCT扫描中可分析的视网膜层的厚度可能是有效的生物标志物。作为逻辑第一步,这项工作集中在视网膜层分割的挑战性任务以及超级分辨率的挑战性任务上,以提高清晰度和准确性。我们提出了一个基于GAN的细分模型,并评估合并流行网络,即U-NET和RESNET,在GAN体系结构中,并具有其他转置卷积和子像素卷积的块,以通过将OCT图像从低分辨率提高到高分辨率到高分辨率的任务。四个因素。我们还将骰子损失纳入了额外的重建损失项,以提高该联合优化任务的性能。我们的最佳模型配置从经验上实现了0.867的骰子系数,MIOU为0.765。
translated by 谷歌翻译
Medical image segmentation is an actively studied task in medical imaging, where the precision of the annotations is of utter importance towards accurate diagnosis and treatment. In recent years, the task has been approached with various deep learning systems, among the most popular models being U-Net. In this work, we propose a novel strategy to generate ensembles of different architectures for medical image segmentation, by leveraging the diversity (decorrelation) of the models forming the ensemble. More specifically, we utilize the Dice score among model pairs to estimate the correlation between the outputs of the two models forming each pair. To promote diversity, we select models with low Dice scores among each other. We carry out gastro-intestinal tract image segmentation experiments to compare our diversity-promoting ensemble (DiPE) with another strategy to create ensembles based on selecting the top scoring U-Net models. Our empirical results show that DiPE surpasses both individual models as well as the ensemble creation strategy based on selecting the top scoring models.
translated by 谷歌翻译
迄今为止,纳米级的活细胞成像仍然具有挑战性。尽管超分辨率显微镜方法使得能够在光学分辨率下方的亚细胞结构的可视化,但空间分辨率仍然足够远,对于体内生物分子的结构重建仍然足够远(即24nm厚度的微管纤维)。在这项研究中,我们提出了一种A-Net网络,并显示通过基于劣化模型的DWDC算法组合A-Net DeeD学习网络,可以显着改善由共聚焦显微镜捕获的细胞骨架图像的分辨率。利用DWDC算法构建新数据集并利用A-Net神经网络的特征(即,层数较少),我们成功地消除了噪声和絮凝结构,最初干扰了原始图像中的蜂窝结构,并改善了空间分辨率使用相对较小的数据集10次。因此,我们得出结论,将A-Net神经网络与DWDC方法结合的所提出的算法是一种合适的和普遍的方法,用于从低分辨率图像中严格的生物分子,细胞和器官的结构细节。
translated by 谷歌翻译
血管分割从图像中提取血管,并作为诊断各种疾病的基础,例如眼科疾病。眼科医生通常需要高分辨率分割结果进行分析,这会导致大多数现有方法的超计算负载。如果基于低分辨率的输入,它们很容易忽略微小的容器或引起分段容器的不连续性。为了解决这些问题,本文提出了一种名为Subersessel的算法,该算法使用低分辨率图像作为输入提供了高分辨率和准确的容器分割。我们首先将超分辨率作为我们的辅助分支,以提供潜在的高分辨率细节特征,可以在测试阶段删除。其次,我们提出了两个模块,以增强感兴趣的分割区域的特征,包括具有特征分解(UFD)模块的上采样和功能相互作用模块(FIM),并限制了损失,以关注感兴趣的功能。与其他最先进的算法相比,在三个公开数据集上进行了广泛的实验表明,我们提出的Supersess可以将更高的细分精度分割为6%以上的细分精度。此外,Supercessel的稳定性也比其他算法更强。发表论文后,我们将发布代码。
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译
Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
由于图像的复杂性和活细胞的时间变化,来自明亮场光显微镜图像的活细胞分割具有挑战性。最近开发的基于深度学习(DL)的方法由于其成功和有希望的结果而在医学和显微镜图像分割任务中变得流行。本文的主要目的是开发一种基于U-NET的深度学习方法,以在明亮场传输光学显微镜中分割HeLa系的活细胞。为了找到适合我们数据集的最合适的体系结构,提出了剩余的注意U-net,并将其与注意力和简单的U-NET体系结构进行了比较。注意机制突出了显着的特征,并抑制了无关图像区域中的激活。残余机制克服了消失的梯度问题。对于简单,注意力和剩余的关注U-NET,我们数据集的平均值得分分别达到0.9505、0.9524和0.9530。通过将残留和注意机制应用在一起,在平均值和骰子指标中实现了最准确的语义分割结果。应用的分水岭方法适用于这种最佳的(残留的关注)语义分割结果,使每个单元格的特定信息进行了分割。
translated by 谷歌翻译
Generally, microscopy image analysis in biology relies on the segmentation of individual nuclei, using a dedicated stained image, to identify individual cells. However stained nuclei have drawbacks like the need for sample preparation, and specific equipment on the microscope but most importantly, and as it is in most cases, the nuclear stain is not relevant to the biological questions of interest but is solely used for the segmentation task. In this study, we used non-stained brightfield images for nuclei segmentation with the advantage that they can be acquired on any microscope from both live or fixed samples and do not necessitate specific sample preparation. Nuclei semantic segmentation from brightfield images was obtained, on four distinct cell lines with U-Net-based architectures. We tested systematically deep pre-trained encoders to identify the best performing in combination with the different neural network architectures used. Additionally, two distinct and effective strategies were employed for instance segmentation, followed by thorough instance evaluation. We obtained effective semantic and instance segmentation of nuclei in brightfield images from standard test sets as well as from very diverse biological contexts triggered upon treatment with various small molecule inhibitor. The code used in this study was made public to allow further use by the community.
translated by 谷歌翻译
本文提出了一个新颖的像素间隔下采样网络(PID-NET),以较高的精度计算任务,以更高的精度计数任务。 PID-NET是具有编码器架构的端到端卷积神经网络(CNN)模型。像素间隔向下采样操作与最大功能操作相连,以结合稀疏和密集的特征。这解决了计数时茂密物体的轮廓凝结的局限性。使用经典分割指标(骰子,Jaccard和Hausdorff距离)以及计数指标进行评估。实验结果表明,所提出的PID-NET具有最佳的性能和潜力,可以实现密集的微小对象计数任务,该任务在数据集上具有2448个酵母单元图像在数据集上达到96.97 \%的计数精度。通过与最新的方法进行比较,例如注意U-NET,SWIN U-NET和TRANS U-NET,提出的PID-NET可以分割具有更清晰边界和较少不正确的碎屑的密集的微小物体,这表明PID网络在准确计数的任务中的巨大潜力。
translated by 谷歌翻译
该卷包含来自机器学习挑战的选定贡献“发现玛雅人的奥秘”,该挑战在欧洲机器学习和数据库中知识发现的欧洲挑战赛曲目(ECML PKDD 2021)中提出。遥感大大加速了古代玛雅人森林地区的传统考古景观调查。典型的探索和发现尝试,除了关注整个古老的城市外,还集中在单个建筑物和结构上。最近,已经成功地尝试了使用机器学习来识别古代玛雅人定居点。这些尝试虽然相关,但却集中在狭窄的区域上,并依靠高质量的空中激光扫描(ALS)数据,该数据仅涵盖古代玛雅人曾经定居的地区的一小部分。另一方面,由欧洲航天局(ESA)哨兵任务制作的卫星图像数据很丰富,更重要的是公开。旨在通过执行不同类型的卫星图像(Sentinel-1和Sentinel-2和ALS)的集成图像细分来定位和识别古老的Maya架构(建筑物,Aguadas和平台)的“发现和识别古代玛雅体系结构(建筑物,Aguadas和平台)的挑战的“发现和识别古老的玛雅体系结构(建筑物,阿吉达斯和平台)的“发现玛雅的奥秘”的挑战, (LIDAR)数据。
translated by 谷歌翻译
前列腺癌是全世界男性癌症第二大的癌症和第六主要原因。专家在诊断前列腺癌期间面临的主要问题是含有肿瘤组织的感兴趣区域(ROI)的定位。目前,在大多数情况下,该ROI的分割是由专家医生手动进行的,但是该程序受到某些患者的检测率低(约27-44%)或过度诊断的困扰。因此,几项研究工作解决了从磁共振图像中自动分割和提取ROI特征的挑战,因为此过程可以极大地促进许多诊断和治疗应用。然而,缺乏明确的前列腺边界,前列腺组织固有的异质性以及多种前列腺形状的多样性使这一过程非常难以自动化。在这项工作中,通过获得的MRI图像数据集对六个深度学习模型进行了培训和分析。来自Dijon中心的医院和Catalunya大学。我们使用分类跨环膜损失函数进行了多种深度学习模型(即U-NET,注意U-NET,密度密度,R2U-NET和R2U-NET)的比较。使用通常用于图像分割的三个指标进行分析:骰子分数,JACCARD索引和均方误差。为我们提供最佳结果分割的模型是R2U-NET,骰子,Jaccard和平均平方误差分别达到0.869、0.782和0.00013。
translated by 谷歌翻译
不工会是骨科诊所面临的针对技术困难和高成本拍摄骨间毛细血管面临的挑战之一。细分容器和填充毛细血管对于理解毛细血管生长遇到的障碍至关重要。但是,现有用于血管分割的数据集主要集中在人体的大血管上,缺乏标记的毛细管图像数据集极大地限制了血管分割和毛细血管填充的方法论开发和应用。在这里,我们提出了一个名为IFCIS-155的基准数据集,由155个2D毛细管图像组成,该图像具有分割边界和由生物医学专家注释的血管填充物,以及19个大型高分辨率3D 3D毛细管图像。为了获得更好的骨间毛细血管图像,我们利用最先进的免疫荧光成像技术来突出骨间毛细血管的丰富血管形态。我们进行全面的实验,以验证数据集和基准测试深度学习模型的有效性(\ eg UNET/UNET ++和修改后的UNET/UNET ++)。我们的工作提供了一个基准数据集,用于培训毛细管图像细分的深度学习模型,并为未来的毛细管研究提供了潜在的工具。 IFCIS-155数据集和代码均可在\ url {https://github.com/ncclabsustech/ifcis-55}上公开获得。
translated by 谷歌翻译
高分辨率遥感图像用于广泛的任务,包括对象的检测和分类。然而,高分辨率图像昂贵,而较低的分辨率图像通常是可自由的可用的,并且可以由公众用于社会良好应用范围。为此,我们使用从Spacenet 7挑战的PlanetsCope图像策划多个频谱多图像超分辨率数据集作为高分辨率参考和与低分辨率图像相同的图像的多个Sentinel-2重新定位。我们介绍了将多图像超分辨率(MISR)应用于多光谱遥感图像的第一个结果。此外,我们还将辐射级一致性模块引入MISR模型,以保持哨声-2传感器的高辐射分辨率。我们表明MISR优于一系列图像保真度指标的单图像超分辨率和其他基线。此外,我们对建筑描绘的多图像超分辨率的效用进行了第一次评估,显示利用多个图像导致这些下游任务中的更好的性能。
translated by 谷歌翻译
宫颈癌是女性最常见的癌症类型之一。它占女性所有癌症的6-29%。它是由人类乳头状瘤病毒(HPV)引起的。宫颈癌的5年生存机会范围从17%-92%的范围内,具体取决于检测到的阶段。早期发现该疾病有助于更好地治疗患者。如今,许多深度学习算法被用于检测宫颈癌。一种被称为生成对抗网络(GAN)的深度学习技术的特殊类别正在赶上宫颈癌的筛查,检测和分类中的速度。在这项工作中,我们介绍了有关使用各种GAN模型,其应用以及用于其在宫颈癌成像领域的性能评估的评估指标的最新趋势的详细分析。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
In medical image analysis, low-resolution images negatively affect the performance of medical image interpretation and may cause misdiagnosis. Single image super-resolution (SISR) methods can improve the resolution and quality of medical images. Currently, Generative Adversarial Networks (GAN) based super-resolution models have shown very good performance. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is one of the practical GAN-based models which is widely used in the field of general image super-resolution. One of the challenges in medical image super-resolution is that, unlike natural images, medical images do not have high spatial resolution. To solve this problem, we can use transfer learning technique and fine-tune the model that has been trained on external datasets (often natural datasets). In our proposed approach, the pre-trained generator and discriminator networks of the Real-ESRGAN model are fine-tuned using medical image datasets. In this paper, we worked on chest X-ray and retinal images and used the STARE dataset of retinal images and Tuberculosis Chest X-rays (Shenzhen) dataset for fine-tuning. The proposed model produces more accurate and natural textures, and its outputs have better detail and resolution compared to the original Real-ESRGAN outputs.
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
我们分享了我们最近的发现,以试图培训通用分割网络的各种细胞类型和成像方式。我们的方法建立在广义的U-NET体系结构上,该体系结构允许单独评估每个组件。我们修改了传统的二进制培训目标,以包括三个类以进行直接实例细分。进行了有关培训方案,培训设置,网络骨架和各个模块的详细实验。我们提出的培训方案依次从每个数据集中吸取小匹配,并且在优化步骤之前积累了梯度。我们发现,培训通用网络的关键是所有数据集上的历史监督,并且有必要以公正的方式对每个数据集进行采样。我们的实验还表明,可能存在共同的特征来定义细胞类型和成像方式的细胞边界,这可以允许应用训练有素的模型完全看不见的数据集。一些培训技巧可以进一步提高细分性能,包括交叉渗透损失功能中的班级权重,精心设计的学习率调度程序,较大的图像作物以进行上下文信息以及不平衡类别的其他损失条款。我们还发现,由于它们更可靠的统计估计和更高的语义理解,分割性能可以受益于组规范化层和缺陷的空间金字塔池模块。我们参与了在IEEE国际生物医学成像研讨会(ISBI)2021举行的第六个细胞跟踪挑战(CTC)。我们的方法被评估为在主要曲目的初始提交期间,作为最佳亚军,并在额外的竞争中获得了第三名,以准备摘要出版物。
translated by 谷歌翻译
Encoder-解码器神经网络架构设计的最新进展导致了广泛的医学图像分割任务中的显着性能改进。然而,给定任务的最先进的网络可能太需要运行经济实惠的硬件,因此用户通常通过修改各种宏观级别的设计方面来验证实用的解决方法。两个常见示例是对输入图像的下采样,并减少网络深度以满足计算机内存约束。在本文中,我们调查这些变化对细分性能的影响,并显示图像复杂性可以用作选择最适合给定数据集的指导方针。我们考虑了四项统计措施来量化图像复杂性,并评估其在十个不同的公共数据集上的适用性。出于我们的实验的目的,我们还提出了两个新的编码器解码器架构,代表浅层和深度网络,这些宽度比目前流行的网络更高效。我们的研究结果表明,中位数是决定可接受的输入下采样因子和网络深度的最佳复杂性度量。对于高复杂性数据集,在原始图像上运行的浅网络可以产生比在下采样的图像上运行的深网络的更好的分段结果,而相反可能是低复杂性图像的情况。
translated by 谷歌翻译