现代的高通量单细胞免疫分析技术,例如流量,质量细胞术和单细胞RNA测序,可以轻松地测量多种患者队列中数百万个细胞中大量蛋白质或基因特征的表达。虽然生物信息学方法可用于将免疫细胞异质性与感兴趣的外部变量(例如临床结果或实验标签)联系起来,但它们通常很难适应如此大量的概要细胞。为了减轻这种计算负担,通常有限的单元格是\ emph {sherped}或从每个患者中进行了采样。但是,现有的草图方法无法从稀有细胞群中充分分类稀有细胞,或者无法保留特定免疫细胞类型的真实频率。在这里,我们提出了一种基于内核牛群的新颖素描方法,该方法选择了所有细胞的有限子样本,同时保留了免疫细胞类型的潜在频率。我们在三个流量和质量细胞仪数据集以及一个单细胞RNA测序数据集上测试了方法,并证明了素描的单元格(1)更准确地表示整体蜂窝景观,(2)促进下游分析任务的性能提高,例如根据患者的临床结果对患者进行分类。 \ url {https://github.com/vishalathreya/set-summarization}公开获得用内核放牧的素描实现。
translated by 谷歌翻译
现代单细胞流量和质量细胞仪技术测量血液或组织样品中单个细胞的几种蛋白质的表达。因此,每个分析的生物样品都由数十万个多维细胞特征向量表示,这会产生高计算成本,以预测每个生物样品与机器学习模型的相关表型。如此大的固定基础性也限制了机器学习模型的可解释性,因为难以跟踪每个单个单个细胞如何影响最终预测。我们建议使用内核平均嵌入来编码每个分类生物样品的细胞景观。尽管我们最重要的目标是制作一个更透明的模型,但我们发现我们的方法与通过简单的线性分类器相比,您的方法获得了可比性或更好的精度。结果,我们的模型包含很少的参数,但仍与具有数百万参数的深度学习模型相似。与深度学习方法相反,我们模型的线性和子选择步骤使解释分类结果变得容易。分析进一步表明,我们的方法可以接受丰富的生物学解释性,以将细胞异质性与临床表型联系起来。
translated by 谷歌翻译
可视化非常大的矩阵涉及许多强大的问题。这些问题的各种流行的解决方案涉及采样,群集,投影或特征选择,以降低原始任务的大小和复杂性。这些方法的一个重要方面是如何在减少行和列以便在较低尺寸空间中保持高维空间中的点之间的相对距离。这方面很重要,因为基于错误的视觉推理的结论可能是有害的。在可视化的基础上判断与相似或类似的点相似或类似的点可以导致错误的结论。为了改善这种偏差并使非常大的数据集的可视化可行,我们介绍了两个新的算法,分别选择矩形矩阵的行和列的子集。这种选择旨在尽可能地保持相对距离。我们将矩阵素描与各种人工和真实数据集的更传统的替代品进行比较。
translated by 谷歌翻译
We consider the problem of assigning class labels to an unlabeled test data set, given several labeled training data sets drawn from similar distributions. This problem arises in several applications where data distributions fluctuate because of biological, technical, or other sources of variation. We develop a distributionfree, kernel-based approach to the problem. This approach involves identifying an appropriate reproducing kernel Hilbert space and optimizing a regularized empirical risk over the space. We present generalization error analysis, describe universal kernels, and establish universal consistency of the proposed methodology. Experimental results on flow cytometry data are presented.
translated by 谷歌翻译
学习有意义的数据表示,可以解决诸如批处理效应校正和反事实推断之类的挑战,这在包括计算生物学在内的许多领域中都是一个核心问题。采用有条件的VAE框架,我们表明表示和条件变量之间的边际独立性在这两个挑战中都起着关键作用。我们提出了后代方法的对比混合物(COMP)方法,该方法使用了根据变异后代的混合物定义的新型未对准惩罚,以在潜在空间中实现这种独立性。我们表明,与以前的方法相比,COMP具有有吸引力的理论特性,并且在其他假设下,我们证明了COMP的反事实可识别性。我们在一系列具有挑战性的任务上展示了最先进的表现,包括将人类肿瘤样品与癌细胞线对准,预测转录组级的扰动反应以及单细胞RNA测序数据的批次校正。我们还发现与公平代表学习的相似之处,并证明Comp在该领域的共同任务上具有竞争力。
translated by 谷歌翻译
组织病理学图像提供了癌症诊断的明确来源,其中包含病理学家用来识别和分类恶性疾病的信息,并指导治疗选择。这些图像包含大量信息,其中大部分目前不可用人类的解释。有监督的深度学习方法对于分类任务非常有力,但它们本质上受注释的成本和质量限制。因此,我们开发了组织形态表型学习,这是一种无监督的方法,它不需要注释,并且通过小图像瓷砖中的歧视性图像特征的自我发现进行操作。瓷砖分为形态上相似的簇,这些簇似乎代表了自然选择下出现的肿瘤生长的复发模式。这些簇具有不同的特征,可以使用正交方法识别。应用于肺癌组织,我们表明它们与患者的结局紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组度量。
translated by 谷歌翻译
大多数维度降低方法采用频域表示,从基质对角线化获得,并且对于具有较高固有维度的大型数据集可能不会有效。为了应对这一挑战,相关的聚类和投影(CCP)提供了一种新的数据域策略,不需要解决任何矩阵。CCP将高维特征分配到相关的群集中,然后根据样本相关性将每个集群中的特征分为一个一维表示。引入了残留相似性(R-S)分数和索引,Riemannian歧管中的数据形状以及基于代数拓扑的持久性Laplacian进行可视化和分析。建议的方法通过与各种机器学习算法相关的基准数据集验证。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
了解生物和人造网络的运作仍然是一个艰难而重要的挑战。为了确定一般原则,研究人员越来越有兴趣测量培训的大量网络,或者在培训或生物学地适应类似的任务。现在需要一种标准化的分析工具来确定网络级协变量 - 例如架构,解剖脑区和模型生物 - 影响神经表示(隐藏层激活)。在这里,我们通过定义量化代表性异化的广泛的公制空间,为这些分析提供严格的基础。使用本框架,我们根据规范相关分析修改现有的代表性相似度量,以满足三角形不等式,制定致扫描层中的感应偏差的新型度量,并识别使网络表示能够结合到基本上的近似的欧几里德嵌入物。货架机学习方法。我们展示了来自生物学(Allen Institute脑观测所)和深度学习(NAS-BENCH-101)的大规模数据集的这些方法。在这样做时,我们识别在解剖特征和模型性能方面可解释的神经表现之间的关系。
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
这篇综述的目的是将读者介绍到图表内,以将其应用于化学信息学中的分类问题。图内核是使我们能够推断分子的化学特性的功能,可以帮助您完成诸如寻找适合药物设计的化合物等任务。内核方法的使用只是一种特殊的两种方式量化了图之间的相似性。我们将讨论限制在这种方法上,尽管近年来已经出现了流行的替代方法,但最著名的是图形神经网络。
translated by 谷歌翻译
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distributionfree tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
动机:癌症是异质的,影响了个性化治疗的精确方法。准确的亚型可以导致癌症患者的生存率更好。高通量技术为癌症亚型提供了多个OMIC数据。但是,由于OMICS数据的大量和高维度,精确的癌症亚型仍然具有挑战性。结果:这项研究提出了基于MLP和变压器块的深度学习方法拟议的亚型形式,以提取多摩学数据的低维表示。 K-均值和共识聚类也用于获得准确的亚型结果。我们比较了TCGA 10癌症类型的其他最先进的亚型方法。我们发现,基于生存分析,亚型形式可以在5000多个肿瘤的基准数据集上表现更好。此外,亚型形式还取得了泛滥亚型的出色结果,这可以帮助分析分子水平上各种癌症类型的共同点和差异。最后,我们将亚型格式应用于TCGA 10类型的癌症。我们确定了50种基本生物标志物,可用于研究靶向癌症药物并促进精密医学时代的癌症治疗。
translated by 谷歌翻译
化学成像技术的使用正在成为病理学传统方法的常规伴奏。重大的技术进步已经开发了这些下一代技术,以提供丰富的空间分辨,多维化学图像。数字病理学的兴起显着增强了这些成像方式与光学显微镜和免疫组织化学的协同作用,从而增强了我们对疾病生物学机制和进展的理解。诸如成像质量细胞术之类的技术提供了与数字病理技术结合使用的特定组件的标记的多维(多重)图像。这些强大的技术产生了大量的高维数据,在数据分析中构成了重大挑战。无监督的方法(例如聚类)是分析这些数据的一种有吸引力的方法,但是,它们需要选择参数,例如簇数。在这里,我们提出了一种方法,以自动数据驱动的方式估算簇数,使用深稀疏的自动编码器将数据嵌入较低的维空间。我们计算嵌入式空间中区域的密度,其中大多数是空的,使高密度区域能够被检测为离群值,并提供了簇数量的估计值。该框架提供了一种完全无监督和数据驱动的方法来分析多维数据。在这项工作中,我们使用45个多重成像质量细胞仪数据集演示了我们的方法。此外,我们的模型仅使用其中一个数据集进行培训,并且将学习的嵌入应用于其余44张图像,从而提供了有效的数据分析过程。最后,我们证明了我们的方法的高计算效率,这比通过计算总和平方距离作为群集数的函数估算的速度要快。
translated by 谷歌翻译
测量两个对象之间的相似性是将类似对象分组成群的现有聚类算法中的核心操作。本文介绍了一种名为Point-Set内核的新的相似性度量,其计算对象和一组对象之间的相似性。所提出的聚类程序利用这一新措施来表征从种子对象生长的每个集群。我们表明新的聚类程序既有效又高效,使其能够处理大规模数据集。相比之下,现有的聚类算法是有效的或有效的。与最先进的密度 - 峰值聚类和可扩展内核K-means聚类相比,我们表明该算法更有效,在申请数百万数据点的数据集时更快地运行数量级,在常用的计算机器。
translated by 谷歌翻译
非线性维度降低可以通过\纺织{歧管学习}方法来执行,例如随机邻居嵌入(SNE),局部线性嵌入(LLE)和等距特征映射(ISOMAP)。这些方法旨在产生两个或三个潜在嵌入的嵌入,主要用于可视化可理解的表示数据。此稿件提出了学生的T分布式SNE(T-SNE),LLE和ISOMAP的扩展,以实现多维数量和多视图数据的可视化。多视图数据是指从相同样本生成的多种类型的数据。与通过单独可视化所获得的数据,所提出的多视图方法提供了比较通过可视化所获得的多个数据的更可理解的预测。通常可视化用于识别样本内的底层模式。通过将获得的低维嵌入从多视图歧管中的方法结合到K-Means聚类算法中,示出了准确地识别出样品的簇。通过对实际和合成数据的分析,发现所提出的多SNE方法具有最佳性能。我们进一步说明了多SNE方法对分析多OMICS单细胞数据的适用性,目的是在与健康和疾病相关的生物组织中可视化和识别细胞异质性和细胞类型。
translated by 谷歌翻译
细胞仪可实现异质种群中精确的单细胞表型。这些细胞类型传统上是通过手动门控来注释的,但是这种方法遭受了对批处理效应的重现性和敏感性的缺乏。同样,最新的细胞仪 - 光谱流或质量细胞仪 - 创建丰富而高维的数据,其通过手动门控进行分析变得具有挑战性且耗时。为了解决这些局限性,我们引入了SCYAN(https://github.com/mics-lab/scyan),这是一个单-Cell细胞仪注释网络,该网络仅使用有关细胞测量仪面板的先前专家知识自动注释细胞类型。我们证明,SCYAN在多个公共数据集上大大优于相关的最新模型,同时更快,可解释。此外,SCYAN克服了几项互补任务,例如批处理效应,脱钉和人口发现。总体而言,该模型可以加速和简化细胞群体的特征,定量和细胞仪的发现。
translated by 谷歌翻译