我们讨论了多尺度Fisher对Gorsky和MA(2022)提出的多变量依赖的独立性测试,与基于Hilbert-Schmidt独立标准(HSIC)的现有线性时间内核测试相比。我们强调了这样一个事实,即在任何有限样本量的内核测试水平都可以得到准确控制,就像多率级别一样。在我们的实验中,我们观察到测试能力方面的一些性能限制。
translated by 谷歌翻译
我们使用最大平均差异(MMD),Hilbert Schmidt独立标准(HSIC)和内核Stein差异(KSD),,提出了一系列针对两样本,独立性和合适性问题的计算效率,非参数测试,用于两样本,独立性和合适性问题。分别。我们的测试统计数据是不完整的$ u $统计信息,其计算成本与与经典$ u $ u $统计测试相关的样本数量和二次时间之间的线性时间之间的插值。这三个提出的测试在几个内核带宽上汇总,以检测各种尺度的零件:我们称之为结果测试mmdagginc,hsicagginc和ksdagginc。对于测试阈值,我们得出了一个针对野生引导不完整的$ U $ - 统计数据的分位数,该统计是独立的。我们得出了MMDagginc和Hsicagginc的均匀分离率,并准确量化了计算效率和可实现速率之间的权衡:据我们所知,该结果是基于不完整的$ U $统计学的测试新颖的。我们进一步表明,在二次时间案例中,野生引导程序不会对基于更广泛的基于置换的方法进行测试功率,因为​​两者都达到了相同的最小最佳速率(这反过来又与使用Oracle分位数的速率相匹配)。我们通过数值实验对计算效率和测试能力之间的权衡进行数字实验来支持我们的主张。在三个测试框架中,我们观察到我们提出的线性时间聚合测试获得的功率高于当前最新线性时间内核测试。
translated by 谷歌翻译
我们提出了一种基于最大平均差异(MMD)的新型非参数两样本测试,该测试是通过具有不同核带宽的聚合测试来构建的。这种称为MMDAGG的聚合过程可确保对所使用的内核的收集最大化测试能力,而无需持有核心选择的数据(这会导致测试能力损失)或任意内核选择,例如中位数启发式。我们在非反应框架中工作,并证明我们的聚集测试对Sobolev球具有最小自适应性。我们的保证不仅限于特定的内核,而是符合绝对可集成的一维翻译不变特性内核的任何产品。此外,我们的结果适用于流行的数值程序来确定测试阈值,即排列和野生引导程序。通过对合成数据集和现实世界数据集的数值实验,我们证明了MMDAGG优于MMD内核适应的替代方法,用于两样本测试。
translated by 谷歌翻译
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distributionfree tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
translated by 谷歌翻译
我们研究了基于内核Stein差异(KSD)的合适性测试的特性。我们介绍了一种构建一个名为KSDAGG的测试的策略,该测试与不同的核聚集了多个测试。 KSDAGG避免将数据分开以执行内核选择(这会导致测试能力损失),并最大程度地提高了核集合的测试功率。我们提供有关KSDAGG的力量的理论保证:我们证明它达到了收集最小的分离率,直到对数期限。可以在实践中准确计算KSDAGG,因为它依赖于参数bootstrap或野生引导程序来估计分位数和级别校正。特别是,对于固定核的带宽至关重要的选择,它避免了诉诸于任意启发式方法(例如中位数或标准偏差)或数据拆分。我们在合成数据和现实世界中发现KSDAGG优于其他基于自适应KSD的拟合优度测试程序。
translated by 谷歌翻译
In nonparametric independence testing, we observe i.i.d.\ data $\{(X_i,Y_i)\}_{i=1}^n$, where $X \in \mathcal{X}, Y \in \mathcal{Y}$ lie in any general spaces, and we wish to test the null that $X$ is independent of $Y$. Modern test statistics such as the kernel Hilbert-Schmidt Independence Criterion (HSIC) and Distance Covariance (dCov) have intractable null distributions due to the degeneracy of the underlying U-statistics. Thus, in practice, one often resorts to using permutation testing, which provides a nonasymptotic guarantee at the expense of recalculating the quadratic-time statistics (say) a few hundred times. This paper provides a simple but nontrivial modification of HSIC and dCov (called xHSIC and xdCov, pronounced ``cross'' HSIC/dCov) so that they have a limiting Gaussian distribution under the null, and thus do not require permutations. This requires building on the newly developed theory of cross U-statistics by Kim and Ramdas (2020), and in particular developing several nontrivial extensions of the theory in Shekhar et al. (2022), which developed an analogous permutation-free kernel two-sample test. We show that our new tests, like the originals, are consistent against fixed alternatives, and minimax rate optimal against smooth local alternatives. Numerical simulations demonstrate that compared to the full dCov or HSIC, our variants have the same power up to a $\sqrt 2$ factor, giving practitioners a new option for large problems or data-analysis pipelines where computation, not sample size, could be the bottleneck.
translated by 谷歌翻译
我们提出了一项新的条件依赖度量和有条件独立性的统计检验。该度量基于在有限位置评估的两个合理分布的分析内嵌入之间的差异。我们在条件独立性的无效假设下获得其渐近分布,并从中设计一致的统计检验。我们进行了一系列实验,表明我们的新测试在I型和类型II误差方面都超过了最先进的方法,即使在高维设置中也是如此。
translated by 谷歌翻译
The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has an intractable limiting distribution. Hence, to design a level-$\alpha$ test, one usually selects the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since every permutation takes quadratic time. We propose the cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, the cross-MMD has a limiting standard Gaussian distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
translated by 谷歌翻译
Independence testing is a fundamental and classical statistical problem that has been extensively studied in the batch setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally, such procedures should (a) allow stopping earlier on easy tasks (and later on harder tasks), hence making better use of available resources, and (b) continuously monitor the data and efficiently incorporate statistical evidence after collecting new data, while controlling the false alarm rate. It is well known that classical batch tests are not tailored for streaming data settings, since valid inference after data peeking requires correcting for multiple testing, but such corrections generally result in low power. In this paper, we design sequential kernelized independence tests (SKITs) that overcome such shortcomings based on the principle of testing by betting. We exemplify our broad framework using bets inspired by kernelized dependence measures such as the Hilbert-Schmidt independence criterion (HSIC) and the constrained-covariance criterion (COCO). Importantly, we also generalize the framework to non-i.i.d. time-varying settings, for which there exist no batch tests. We demonstrate the power of our approaches on both simulated and real data.
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. The test statistic can be computed in O(m 2 ) time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.
translated by 谷歌翻译
我们在右审查的生存时间和协变量之间介绍一般的非参数独立测试,这可能是多变量的。我们的测试统计数据具有双重解释,首先是潜在无限的重量索引日志秩检验的超级索引,具有属于函数的再现内核HILBERT空间(RKHS)的重量函数;其次,作为某些有限措施的嵌入差异的规范,与Hilbert-Schmidt独立性标准(HSIC)测试统计类似。我们研究了测试的渐近性质,找到了足够的条件,以确保我们的测试在任何替代方案下正确拒绝零假设。可以直截了当地计算测试统计,并且通过渐近总体的野外自注程序进行拒绝阈值。对模拟和实际数据的广泛调查表明,我们的测试程序通常比检测复杂的非线性依赖的竞争方法更好。
translated by 谷歌翻译
随着混凝剂的数量增加,因果推理越来越复杂。给定护理$ x $,混淆器$ z $和结果$ y $,我们开发一个非参数方法来测试\ texit {do-null}假设$ h_0:\; p(y | \ text {\它do}(x = x))= p(y)$违反替代方案。在Hilbert Schmidt独立性标准(HSIC)上进行边缘独立性测试,我们提出了后门 - HSIC(BD-HSIC)并证明它被校准,并且在大量混淆下具有二元和连续治疗的力量。此外,我们建立了BD-HSIC中使用的协方差运算符的估计的收敛性质。我们研究了BD-HSIC对参数测试的优点和缺点以及与边缘独立测试或有条件独立测试相比使用DO-NULL测试的重要性。可以在\超链接{https:/github.com/mrhuff/kgformula} {\ texttt {https://github.com/mrhuff/kgformula}}完整的实现。
translated by 谷歌翻译
最佳运输(OT)及其熵正则后代最近在机器学习和AI域中获得了很多关注。特别地,最优传输已被用于在概率分布之间开发概率度量。我们在本文中介绍了基于熵正常的最佳运输的独立性标准。我们的标准可用于测试两个样本之间的独立性。我们为测试统计制定非渐近界,研究其在零和替代假设下的统计行为。我们的理论结果涉及来自U-Process理论和最佳运输理论的工具。我们在现有的基准上提出了实验结果,说明了所提出的标准的兴趣。
translated by 谷歌翻译
在本文中,我们研究了高维条件独立测试,统计和机器学习中的关键构建块问题。我们提出了一种基于双生成对抗性网络(GANS)的推理程序。具体来说,我们首先介绍双GANS框架来学习两个发电机的条件分布。然后,我们将这两个生成器集成到构造测试统计,这采用多个转换函数的广义协方差措施的最大形式。我们还采用了数据分割和交叉拟合来最小化发电机上的条件,以实现所需的渐近属性,并采用乘法器引导来获得相应的$ P $ -Value。我们表明,构造的测试统计数据是双重稳健的,并且由此产生的测试既逆向I误差,并具有渐近的电源。同样的是,与现有测试相比,我们建立了较弱和实际上更可行的条件下的理论保障,我们的提案提供了如何利用某些最先进的深层学习工具(如GAN)的具体示例帮助解决古典但具有挑战性的统计问题。我们通过模拟和应用于抗癌药物数据集来证明我们的测试的疗效。在https://github.com/tianlinxu312/dgcit上提供了所提出的程序的Python实现。
translated by 谷歌翻译
Over the last decade, an approach that has gained a lot of popularity to tackle non-parametric testing problems on general (i.e., non-Euclidean) domains is based on the notion of reproducing kernel Hilbert space (RKHS) embedding of probability distributions. The main goal of our work is to understand the optimality of two-sample tests constructed based on this approach. First, we show that the popular MMD (maximum mean discrepancy) two-sample test is not optimal in terms of the separation boundary measured in Hellinger distance. Second, we propose a modification to the MMD test based on spectral regularization by taking into account the covariance information (which is not captured by the MMD test) and prove the proposed test to be minimax optimal with a smaller separation boundary than that achieved by the MMD test. Third, we propose an adaptive version of the above test which involves a data-driven strategy to choose the regularization parameter and show the adaptive test to be almost minimax optimal up to a logarithmic factor. Moreover, our results hold for the permutation variant of the test where the test threshold is chosen elegantly through the permutation of the samples. Through numerical experiments on synthetic and real-world data, we demonstrate the superior performance of the proposed test in comparison to the MMD test.
translated by 谷歌翻译
独立测试在观察数据中的统计和因果推断中起着核心作用。标准独立测试假定数据样本是独立的,并且分布相同(i.i.d。),但是在以关系系统为中心的许多现实世界数据集和应用中违反了该假设。这项工作通过为影响个人实例的一组观测值定义足够的观察表,研究了从关系系统中估算独立性的问题。具体而言,我们通过将内核平均嵌入为关系变量的灵活聚合函数来定义关系数据的边际和条件独立性测试。我们提出了一个一致的,非参数,可扩展的内核测试,以对非I.I.D的关系独立性测试进行操作。一组结构假设下的观察数据。我们在经验上对各种合成和半合成网络进行了经验评估我们提出的方法,并证明了与基于最新内核的独立性测试相比其有效性。
translated by 谷歌翻译
两样本测试在统计和机器学习中很重要,既是科学发现的工具,又是检测分布变化的工具。这导致了许多复杂的测试程序的开发,超出了标准监督学习框架,它们的用法可能需要有关两样本测试的专业知识。我们使用一个简单的测试,该测试将证人功能的平均差异作为测试统计量,并证明最小化平方损失会导致具有最佳测试能力的证人。这使我们能够利用汽车的最新进步。如果没有任何用户对当前问题的输入,并在我们所有实验中使用相同的方法,我们的AutoML两样本测试可以在各种分配转移基准以及挑战两样本测试问题上实现竞争性能。我们在Python软件包AUTOTST中提供了Automl两样本测试的实现。
translated by 谷歌翻译
We develop an online kernel Cumulative Sum (CUSUM) procedure, which consists of a parallel set of kernel statistics with different window sizes to account for the unknown change-point location. Compared with many existing sliding window-based kernel change-point detection procedures, which correspond to the Shewhart chart-type procedure, the proposed procedure is more sensitive to small changes. We further present a recursive computation of detection statistics, which is crucial for online procedures to achieve a constant computational and memory complexity, such that we do not need to calculate and remember the entire Gram matrix, which can be a computational bottleneck otherwise. We obtain precise analytic approximations of the two fundamental performance metrics, the Average Run Length (ARL) and Expected Detection Delay (EDD). Furthermore, we establish the optimal window size on the order of $\log ({\rm ARL})$ such that there is nearly no power loss compared with an oracle procedure, which is analogous to the classic result for window-limited Generalized Likelihood Ratio (GLR) procedure. We present extensive numerical experiments to validate our theoretical results and the competitive performance of the proposed method.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译