在本文中,我们发展了数字拓扑组的基本理论。基本定义基于组乘法所需的连续性的细节直接导致两个单独的类别。我们定义$ \ np_1 $ - 和$ \ np_2 $ - 数字拓扑组,并研究其属性和代数结构。$ \ np_2 $类别非常限制,我们提供$ \ np_2 $ - 数字拓扑组的完整分类。我们还提供了许多$ \ np_1 $ - 数字拓扑组的示例。我们定义数字拓扑组同态,并描述第一个同构定理的数字对应物。
translated by 谷歌翻译
我们系统地研究了拓扑空间的理论的基本属性,例如预先底座,子空间,分离,关联等的公理等前拓扑在知识结构理论中也称为知识空间。我们讨论知识空间理论,亚历山大空间和准序数空间的关系分离的公理语言,以及知识空间的主要项目中拓扑空间密度的应用。特别是,我们给出了技能多猿类的表征,使得描绘知识结构是一个知识空间,它在\ cite {falmagne2011 learning}或\ cite {xglj}中的问题答案,每当每个项目都有很多竞争力时;此外,我们提供了一个算法,用于找到任何有限知识空间的Atom主项目。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
让F:R ^ N - > R是前馈RELU神经网络。众所周知,对于任何选择参数,F是连续和分段(仿射)线性的。我们为有系统调查提供了一些基础,用于系统的架构如何影响其可能的决策区域的几何和拓扑以进行二进制分类任务。在差分拓扑中顺利函数的经典进展之后,我们首先定义通用,横向relu神经网络的概念,并显示几乎所有的Relu网络都是通用的和横向的。然后,我们在F的域中定义了一个部分取向的线性1-复合物,并识别该复合物的属性,从而产生妨碍决策区域的有界连接分量的障碍物。我们使用该阻塞来证明具有单个隐藏的尺寸层(N + 1)的通用横向Relu网络F:R ^ N - > R的决策区域可以不具有多于一个有界连接的组件。
translated by 谷歌翻译
有条件的独立性已被广泛用于AI,因果推理,机器学习和统计数据。我们介绍分类生物,这是一种代数结构,用于表征条件独立性的普遍特性。分类物被定义为两个类别的混合体:一个编码由对象和箭头定义的预订的晶格结构;第二个二个参数化涉及定义​​条件独立性结构的三角体对象和形态,桥梁形态提供了二进制和三元结构之间的接口。我们使用公理集的三个众所周知的示例来说明分类生物:绘画,整数价值多组和分离型。 FOUNDOROIDS将一个分类型映射到另一个分类,从而保留了由共同域中所有三种类型的箭头定义的关系。我们描述了跨官能素的自然转化,该函数是跨常规物体和三角形对象的自然变化,以构建条件独立性的通用表示。我们使用分类器之间的辅助和单核,以抽象地表征条件独立性的图形和非图形表示的忠诚。
translated by 谷歌翻译
我们检查机器学习中出现的组合概念与立方/单纯几何形状中的拓扑概念之间的连接。这些连接使得从几何形状导出到机器学习的结果。我们的第一个主要结果是基于Tracy Hall(2004)的几何结构,其局部炮击的交叉多容院不能延伸。我们使用它来得出最大类别的VC尺寸3,没有角落。从过去11年来,这反驳了在机器学习中的几个工作。特别地,它意味着最佳类别的最佳未标记的样本压缩方案的所有先前结构都是错误的。在积极的一面,我们为最大类提供了一个未标记的样品压缩方案的新建。我们打开我们的未标记的样品压缩方案是否延伸到充足(A.K.A.不平衡或极值)课程,这代表了最大类的自然和深远的概括。在解决这个问题方面,我们就关联立方体复合物的1骷髅的独特宿前方向提供了几何特征。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
Wassersein梯度流通概率措施在各种优化问题中发现了许多应用程序。它们通常由于由涉及梯度型电位的一些平均场相互作用而发展的可交换粒子系统的连续极限。然而,在许多问题中,例如在多层神经网络中,所谓的粒子是在节点可更换的大图上的边缘权重。已知这样的大图可以收敛到连续的限制,称为Graphons,因为它们的大小增长到无穷大。我们表明,边缘权重的合适功能的欧几里德梯度流量会聚到可以被适当地描述为梯度流的曲线上的曲线给出的新型连续轴限制,或者更重要的是最大斜率的曲线。我们的设置涵盖了诸如同性恋功能和标量熵的石墨源上的几种自然功能,并详细介绍了示例。
translated by 谷歌翻译
假设$ g $是根据所谓的HyperGraph随机块模型(HSBM)产生的,我们考虑了稀疏$ Q $均匀的HyperGraph $ G $中的社区检测问题。我们证明,基于非折线操作员的光谱方法具有很高的概率,可以降低到Angelini等人猜想的广义kesten-Stigum检测阈值。我们表征了稀疏HSBM的非背带操作员的频谱,并使用Ihara-Bass公式为超图提供有效的尺寸降低程序。结果,可以将稀疏HSBM的社区检测减少为$ 2N \ times 2n $非正态矩阵的特征向量问题,该矩阵从邻接矩阵和超级格雷普的学位矩阵中构建。据我们所知,这是第一种可证明,有效的光谱算法,它可以根据一般对称概率张量生成$ K $块的HSBMS阈值。
translated by 谷歌翻译
我们回答以下问题,哪些结合性查询以多种方式上的许多正和负面示例以及如何有效地构建此类示例的特征。结果,我们为一类连接的查询获得了一种新的有效的精确学习算法。我们的贡献的核心是两种新的多项式时间算法,用于在有限结构的同态晶格中构建前沿。我们还讨论了模式映射和描述逻辑概念的独特特征性和可学习性的影响。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
矢量值随机变量的矩序列可以表征其定律。我们通过使用所谓的稳健签名矩来研究路径值随机变量(即随机过程)的类似问题。这使我们能够为随机过程定律得出最大平均差异类型的度量,并研究其在随机过程定律方面引起的拓扑。可以使用签名内核对该度量进行内核,从而有效地计算它。作为应用程序,我们为随机过程定律提供了非参数的两样本假设检验。
translated by 谷歌翻译
我们提出了普遍因果关系,这是一个基于类别理论的总体框架,该框架定义了基于因果推理的普遍特性,该属性独立于所使用的基本代表性形式主义。更正式的是,普遍的因果模型被定义为由对象和形态组成的类别,它们代表因果影响,以及进行干预措施(实验)和评估其结果(观察)的结构。函子在类别之间的映射和自然变换映射在相同两个类别的一对函子之间。我们框架中的抽象因果图是使用类别理论的通用构造构建的,包括抽象因果图的限制或共限制,或更普遍的KAN扩展。我们提出了普遍因果推断的两个基本结果。第一个结果称为普遍因果定理(UCT),与图的通用性有关,这些结果被视为函数映射对象和关系从抽象因果图的索引类别到一个实际因果模型,其节点由随机变量标记为实际因果模型和边缘代表功能或概率关系。 UCT指出,任何因果推论都可以以规范的方式表示为代表对象的抽象因果图的共同限制。 UCT取决于滑轮理论的基本结果。第二个结果是因果繁殖特性(CRP),指出对象x对另一个对象y的任何因果影响都可以表示为两个抽象因果图之间的自然转化。 CRP来自Yoneda引理,这是类别理论中最深层的结果之一。 CRP属性类似于复制元素希尔伯特空间中的繁殖属性,该元素是机器学习中内核方法的基础。
translated by 谷歌翻译
Convolutional neural networks have been extremely successful in the image recognition domain because they ensure equivariance to translations. There have been many recent attempts to generalize this framework to other domains, including graphs and data lying on manifolds. In this paper we give a rigorous, theoretical treatment of convolution and equivariance in neural networks with respect to not just translations, but the action of any compact group. Our main result is to prove that (given some natural constraints) convolutional structure is not just a sufficient, but also a necessary condition for equivariance to the action of a compact group. Our exposition makes use of concepts from representation theory and noncommutative harmonic analysis and derives new generalized convolution formulae.
translated by 谷歌翻译
在本文中,我们在拓扑数据分析和几何深度学习之间建立了一个桥梁,调整了群体模棱两可的非企业运算符(Geneos)的拓扑理论,以在所有图表的空间上作用于在顶点或边缘加权的所有图。这是通过展示Geneo的一般概念可以用于转换图形并提供有关其结构的信息来完成的。这就需要引入广义定义和广义定义措施的新概念以及这些概念使我们能够在图之间构建基因的数学证据。实验部分结束了本文,说明了我们的操作员可能使用从图形中提取信息。本文是一系列研究线的一部分,该研究致力于为几何深度学习开发基因诺的组成和几何理论。
translated by 谷歌翻译
Lipschitz Learning是一种基于图的半监督学习方法,其中一个人通过在加权图上求解Infinity Laplace方程来扩展标签到未标记的数据集的标签。在这项工作中,随着顶点的数量生长到无穷大,我们证明了图形无穷大行道方程的解决方案的统一收敛速率。它们的连续内容是绝对最小化LipsChitz扩展,即关于从图形顶点采样图形顶点的域的测地度量。我们在图表权重的非常一般的假设下工作,标记顶点的集合和连续域。我们的主要贡献是,即使对于非常稀疏的图形,我们也获得了定量的收敛速率,因为它们通常出现在半监督学习等应用中。特别是,我们的框架允许绘制到连接半径的图形带宽。为了证明,我们首先显示图表距离函数的定量收敛性声明,在连续体中的测量距离功能。使用“与距离函数的比较”原理,我们可以将这些收敛语句传递给无限谐波函数,绝对最小化Lipschitz扩展。
translated by 谷歌翻译
在观察性研究中,经常遇到有关存在或缺乏因果边缘和路径的因果背景知识。由于背景知识而导致的马尔可夫等效dag的子类共享的指向边缘和链接可以由因果关系最大部分定向的无循环图(MPDAG)表示。在本文中,我们首先提供了因果MPDAG的声音和完整的图形表征,并提供了因果MPDAG的最小表示。然后,我们介绍了一种名为Direct Causal子句(DCC)的新颖表示,以统一形式表示所有类型的因果背景知识。使用DCC,我们研究因果背景知识的一致性和等效性,并表明任何因果背景知识集都可以等效地分解为因果MPDAG,以及最小的残留DCC。还提供了多项式时间算法,以检查一致性,等效性并找到分解的MPDAG和残留DCC。最后,有了因果背景知识,我们证明了一个足够且必要的条件来识别因果关系,并且出人意料地发现因果效应的可识别性仅取决于分解的MPDAG。我们还开发了局部IDA型算法,以估计无法识别效应的可能值。模拟表明因果背景知识可以显着提高因果影响的识别性。
translated by 谷歌翻译
本文讨论了ERD \ H {O} S-R \'enyi图的图形匹配或网络对齐问题,可以将其视为图同构问题的嘈杂平均案例版本。令$ g $和$ g'$ be $ g(n,p)$ erd \ h {o} s--r \'enyi略微图形,并用其邻接矩阵识别。假设$ g $和$ g'$是相关的,因此$ \ mathbb {e} [g_ {ij} g'_ {ij}] = p(1- \ alpha)$。对于置换$ \ pi $,代表$ g $和$ g'$之间的潜在匹配,用$ g^\ pi $表示从$ \ pi $的$ g $的顶点获得的图表。观察$ g^\ pi $和$ g'$,我们的目标是恢复匹配的$ \ pi $。在这项工作中,我们证明,在(0,1] $中,每$ \ varepsilon \ in(0,1] $,都有$ n_0> 0 $,具体取决于$ \ varepsilon $和绝对常数$ \ alpha_0,r> 0 $,带有以下属性。令$ n \ ge n_0 $,$(1+ \ varepsilon)\ log n \ le np \ le n^{\ frac {1} {r \ log \ log \ log n}} $ (\ alpha_0,\ varepsilon/4)$。有一个多项式时算法$ f $,因此$ \ m athbb {p} \ {f(g^\ pi,g')= \ pi \} = 1-o (1)$。这是第一种多项式时算法,它恢复了相关的ERD \ H {O} S-r \'enyi图与具有恒定相关性的相关性图与高概率相关性的确切匹配。该算法是基于比较的比较与图形顶点关联的分区树。
translated by 谷歌翻译
机器学习中的一个开放问题之一是,是否有VC-Dimension $ d $的任何设置家庭均承认尺寸〜$ O(d)$的样本压缩方案。在本文中,我们研究了图中的球。对于任意半径$ r $的球,我们设计了适当的样品压缩方案$ 2 $ $ 2 $的树木的尺寸$ 3 $ $ 3 $,尺寸为$ 4 $的间隔图,尺寸$ 6 $ 6 $的循环树木和22美元$用于无立方的中位图。对于给定半径的球,我们设计了适当的标记的样品压缩方案,树木的尺寸为$ 2 $,间隔图的尺寸为$ 4 $。我们还设计了$ \ delta $ - 液压图的球的大小2的近似样品压缩方案。
translated by 谷歌翻译