3D地质模型中的每个网格块都需要一种代表该块的所有物理和化学性质的岩石类型。分类岩石类型的性质是岩性,渗透性和毛细管压力。科学家和工程师使用传统的实验室测量确定这些性质,其将破坏性方法嵌入样品或改变其一些性质(即,润湿性,渗透率和孔隙率),因为测量过程包括样品粉碎,流体流动或流体饱和度。最近,数字岩体物理学(DRT)已经出现了从微观计算机断层扫描(UCT)和磁共振成像(MRI)图像中量化这些性质。然而,文献没有尝试以完全数字语境的摇滚打字。我们提出表演数字摇滚打字(DRT):(1)整合最新的DRP在授予数字岩石属性确定的新工艺中; (2)数字化碳酸盐中最新的岩石打字方法,(3)引入了一种新颖的碳酸盐岩字打字过程,该过程利用计算机视觉功能,为异构碳酸岩纹理提供更多洞察力。
translated by 谷歌翻译
自动图像处理算法可以提高分类异构碳酸盐岩石形态的质量,效率和一致性,可以无缝地处理大量的数据和图像。地质学家面临困难在设定从岩石图像,微计算断层扫描(UCT)或磁共振成像(MRI)中确定岩石物理性质的最佳方法的方向。大多数成功的工作是来自同质岩石,专注于2D图像,较少关注3D并需要数值模拟。目前,图像分析方法会聚到三种方法:图像处理,人工智能和具有人工智能的组合图像处理。在这项工作中,我们提出了两种方法来确定3D UCT和MRI图像的孔隙率:具有图像分辨率的图像处理方法优化高斯算法(IROGA);高斯随机森林机器学习差异(MLDGRF)启用先进的图像识别方法。我们已经建立了参考3D微型模型和收集的图像以校准Iroga和MLDGRF方法。为了评估这些校准方法的预测能力,我们在3D UCT和天然异质碳酸盐岩的MRI图像上运行它们。我们分别测量了三种行业标准方式的碳酸盐岩的孔隙度和岩性,分别为参考值。值得注意的是,与三种实验测量相比,IROGA和MLDGRF的精度产生96.2%和97.1%的精度为96.2%和97.1%,91.7%和94.4%。我们使用两种方法,X射线粉末衍射和晶粒密度测量测量石灰石和硫铁矿参考值。 MLDGRF生产岩性(石灰石和硫铁矿)卷,精度为97.7%。
translated by 谷歌翻译
渗透性对天然液的流动性具有显性影响。格子Boltzmann模拟器确定纳米和微孔网络的渗透率。模拟器占据了数百万的流动动态计算,其累积的误差和高耗电量的计算能力。为了有效且始终如一地预测渗透性,我们提出了一种形态学解码器,从3D微型计算机层面扫描和核磁共振图像中提出了机器学习的平行和串行流量重建。对于3D视觉,我们将可控可测量的卷引入新的监督分段,其中一组独特的体素强度对应于晶粒和孔喉部尺寸。形态解码器以新颖的方式贬低并汇集形态边界以产生渗透性。形态学解码器方法由五种新方法组成,其中描述了本文,这些新方法是:(1)几何3D渗透率,(2)机器学习引导3D特性识别岩石形态,(3)3D图像特性集成模型的渗透率(4)MRI渗透成像器,(5)形态解码器(整合其他四个新颖过程的过程)。
translated by 谷歌翻译
更新和竣工模型在过程工厂的生命周期中起着重要作用。特别是,必须精确地为系统精确以确保系统的效率和可靠性。数据驱动的模型可以通过考虑不确定性和生命周期相关的更改来模拟子系统的最新行为。本文介绍了使用早期实施的原型作为示例的过程工厂的混合数字双床模型的逐步概念。它将详细介绍使用流程设备的数据驱动模型更新棕色域处理系统的第一原理模型和数字双胞胎的步骤。还将讨论产生竣工混合数码双床的挑战。在处理历史数据的帮助下,教导机器学习模型,可以随着时间的推移不断提高实现的数字双胞划,并且可以进一步优化这项工作。
translated by 谷歌翻译
“技术彩票”描述了一种研究思想或技术,因为它适合可用的软件和硬件,而不一定是因为它优于替代方向 - 审查是从深度学习和GPU的协同作用到GPU的协同效应,城市设计和自动驾驶汽车的断开连接。自动驾驶实验室(SDL)的新生领域,尤其是作为材料加速平台(地图)实施的新生领域,有类似陷阱的风险:构建地图的下一个逻辑步骤是采用现有的实验室设备和工作流并混合一些AI和自动化。在此白皮书中,我们认为,作为地图研究计划的一部分,将加速搜索新材料的相同模拟和AI工具也使得设计了根本新的计算媒体的设计。我们不必受到科学,机电一体化和通用计算的现有偏见的限制,而是我们可以通过网络物理学习和闭环,自我优化系统来追求工程物理学的新向量。在这里,我们概述了一个基于仿真的地图程序来设计使用物理本身来解决优化问题的计算机。这样的系统减轻了其他每类地图中存在的硬件软件 - 材料用户信息损失,并且它们在计算问题和计算介质之间完全对齐消除了任何技术彩票。我们提供了迈向早期“物理计算(PC)-MAP”进步的具体步骤,以及我们希望在材料研究人员和计算机科学家之间引入创新合作的新时代。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
小型模块化反应堆的概念改变了解决未来能源危机的前景。考虑到其较低的投资要求,模块化,设计简单性和增强的安全功能,这种新的反应堆技术非常有希望。人工智能驱动的多尺度建模(中子,热液压,燃料性能等)在小型模块化反应堆的研究中纳入了数字双胞胎和相关的不确定性。在这项工作中,进行了一项关于耐亡燃料的多尺度建模的全面研究。探索了这些燃料在轻水的小型模块化反应堆中的应用。本章还重点介绍了机器学习和人工智能在设计优化,控制和监视小型模块反应器中的应用。最后,简要评估了有关人工智能在高燃烧复合事故耐受燃料的发展中的研究差距。还讨论了实现这些差距的必要行动。
translated by 谷歌翻译
胆道是一个管网络,将肝脏与胆囊连接到胆囊,这是一个正下方的器官。胆管是胆汁树中的主要管。胆管的扩张是人体中更多主要问题的关键指标,例如石头和肿瘤,这些问题通常是由胰腺或Vater的乳头状引起的。在许多情况下,胆管扩张的检测对于初学者或未经训练的医务人员来说可能具有挑战性。即使是专业人士也无法用肉眼检测到胆管扩张。这项研究提出了一种基于视觉的独特模型,用于初始诊断。为了从磁共振图像分割胆道树,框架使用了不同的图像处理方法(MRI)。在对图像的感兴趣区域进行了细分后,对其进行了许多计算,以提取10个特征,包括主要轴和次要轴,胆管区域,胆汁树面积,紧凑性和某些纹理特征(对比度,平均值,方差和相关性)。这项研究使用了约旦安曼国王侯赛因医学中心的图像数据库,其中包括200张MRI图像,100例正常病例和100例胆管扩张的患者。提取特征后,使用各种分类器来确定患者的健康状况(正常或扩张)。研究结果表明,提取的特征在曲线下的准确性和面积方面与所有分类器都很好。这项研究的独特之处在于,它使用自动方法从MRI图像中分割胆汁树,并且科学地将检索到的特征与胆道树状态相关联,而文献中从未做过。
translated by 谷歌翻译
使热处理可控的一种可能的方法是收集有关产品当前状态的实时信息。通常,感觉设备无法轻松或根本捕获所有相关信息。数字双胞胎在实时模拟中使用虚拟探针缩小了这一差距,并与该过程同步。本文提出了一个基于物理的,数据驱动的数字双框架,用于自动食品处理。我们建议使用设备级别可执行的精益数字双胞胎概念,需要最小的计算负载,数据存储和传感器数据要求。这项研究重点是用于热过程的非侵入性降低模型(ROM)的简约实验设计。在训练数据中表面温度的高标准偏差与ROM测试中的均方根误差之间的高标准偏差之间的相关性($ r = -0.76 $)可以有效地选择训练数据。最佳ROM的平均均方根误差小于代表性测试集的1 kelvin(0.2%平均平均百分比误差)。 SP $ \ $ 1.8E4的仿真速度允许进行设备模型预测控制。拟议的数字双框架旨在适用于行业。通常,一旦在未提供对求解器的根级访问(例如商业仿真软件)中执行该过程的建模,就需要一旦在软件中执行该过程的建模,就需要进行非侵入式降级建模。仅使用一个数据集就可以实现降顺序模型的数据驱动训练,因为使用相关性来预测训练成功。
translated by 谷歌翻译
众所周知,学习障碍主要干扰阅读,写作和数学等基本学习技能,会影响世界上约10%的儿童。作为神经发育障碍的一部分的运动技能和运动协调不足可能成为学习写作困难(障碍)的原因因素,从而阻碍了个人的学术轨道。障碍症的体征和症状包括但不限于不规则的笔迹,不正确的写作媒介处理,缓慢或劳力的写作,不寻常的手部位等。所有类型的学习障碍的评估标准是由医学医学进行的检查专家。少数可用的人工智能筛查系统用于障碍症,依赖于相应图像中手写的独特特征。这项工作对文献中儿童的现有自动化障碍诊断系统进行了综述。这项工作的主要重点是审查基于人工智能的儿童诊断的基于人工智能的系统。这项工作讨论了数据收集方法,重要的手写功能,用于诊断障碍症的文献中使用的机器学习算法。除此之外,本文还讨论了一些基于非人工智能的自动化系统。此外,本文讨论了现有系统的缺点,并提出了一个新颖的障碍诊断框架。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译
在过去的几十年中,人工智能领域大大进展,灵感来自生物学和神经科学领域的发现。这项工作的想法是由来自传入和横向/内部联系的人脑中皮质区域的自组织过程的过程启发。在这项工作中,我们开发了一个原始的脑激发神经模型,将自组织地图(SOM)和Hebbian学习在重新参与索马里(RESOM)模型中。该框架应用于多模式分类问题。与基于未经监督的学习的现有方法相比,该模型增强了最先进的结果。这项工作还通过在名为SPARP(自配置3D蜂窝自适应平台)的专用FPGA的平台上的模拟结果和硬件执行,演示了模型的分布式和可扩展性。头皮板可以以模块化方式互连,以支持神经模型的结构。这种统一的软件和硬件方法使得能够缩放处理并允许来自多个模态的信息进行动态合并。硬件板上的部署提供了在多个设备上并行执行的性能结果,通过专用串行链路在每个板之间的通信。由于多模式关联,所提出的统一架构,由RESOM模型和头皮硬件平台组成的精度显着提高,与集中式GPU实现相比,延迟和功耗之间的良好折衷。
translated by 谷歌翻译
机器学习(ML)为生物处理工程的发展做出了重大贡献,但其应用仍然有限,阻碍了生物过程自动化的巨大潜力。用于模型构建自动化的ML可以看作是引入另一种抽象水平的一种方式,将专家的人类集中在生物过程开发的最认知任务中。首先,概率编程用于预测模型的自动构建。其次,机器学习会通过计划实验来测试假设并进行调查以收集信息性数据来自动评估替代决策,以收集基于模型预测不确定性的模型选择的信息数据。这篇评论提供了有关生物处理开发中基于ML的自动化的全面概述。一方面,生物技术和生物工程社区应意识到现有ML解决方案在生物技术和生物制药中的应用的限制。另一方面,必须确定缺失的链接,以使ML和人工智能(AI)解决方案轻松实施在有价值的生物社区解决方案中。我们总结了几个重要的生物处理系统的ML实施,并提出了两个至关重要的挑战,这些挑战仍然是生物技术自动化的瓶颈,并减少了生物技术开发的不确定性。没有一个合适的程序;但是,这项综述应有助于确定结合生物技术和ML领域的潜在自动化。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
X射线微型计算机断层摄影成像中存在固有的视野和分辨率折衷,这限制了多尺寸多孔系统的表征,分析和模型开发。在本文中,我们通过开发3D增强的深层超分辨率(EDSR)卷积神经网络来克服这些权衡来通过来自低分辨率数据的大型空间尺度创建增强的高分辨率数据。配对高分辨率(HR,2 $ \ MU $ M)和低分辨率(LR,6 $ \ MU $ M)来自Bentheimer Rock样本的图像数据用于培训网络。来自训练样本的未见LR和HR数据以及具有不同微结构的另一个样本,用于验证具有各种度量的网络:文本分析,分段行为和孔网络模型(PNM)多相流模拟。经过验证的EDSR网络用于为每个长度为6-7厘米的全核样品生成约1000个高分辨率转速子图像(总图像大小为约6000x6000x32000体素)。每个子培养物都具有从PNMS预测的不同的岩石物理特性,它们组合以创建每个样本的3D连续级模型。在一系列分数流动下模拟低毛细管数不混溶的流动,并直接在1:1的基础上与实验压力和3D饱和度进行比较。 EDSR产生的模型比在存在异质性存在下预测实验行为的基础LR模型更准确,特别是在遇到孔隙尺寸的广泛分布的流动状态下。该模型通常在预测到在实验重复性和三个数量级的实验重复性和相对渗透率内的饱和度准确。所示的工作流程是一个完全预测的,无需校准,并且打开了在真正的多尺度异构系统中的图像,模拟和分析流动的可能性。
translated by 谷歌翻译
本研究介绍了混合过程建模和优化的广阔视角,将科学知识和数据分析在生物处理和化学工程中与科学引导机学习(SGML)方法相结合。我们将这种方法分为两大类。首先是指基于数据的ML模型的恭维的情况并使基于第一原理的科学的模型在预测中更准确,并且第二个对应于科学知识有助于使ML模型更加科学地保持的情况。我们对科学和工程文献进行了详细审查,与混合SGML方法有关,并提出了混合动力SGML模型的系统分类。为了应用ML改善基于科学的模型,我们呈现了直串行和并行混合建模的子类别及其组合,反向建模,阶阶建模,量化过程中的不确定性,甚至发现该过程的管理方程式的博览会模型。为了应用科学原则来改善ML模型,我们讨论科学导游的设计,学习和改进的子类别。对于每个子类别,我们确定其要求,优势和局限性以及其在生物处理和化学工程中的出版和潜在的应用领域。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
The field of artificial intelligence (AI), regarded as one of the most enigmatic areas of science, has witnessed exponential growth in the past decade including a remarkably wide array of applications, having already impacted our everyday lives. Advances in computing power and the design of sophisticated AI algorithms have enabled computers to outperform humans in a variety of tasks, especially in the areas of computer vision and speech recognition. Yet, AI's path has never been smooth, having essentially fallen apart twice in its lifetime ('winters' of AI), both after periods of popular success ('summers' of AI). We provide a brief rundown of AI's evolution over the course of decades, highlighting its crucial moments and major turning points from inception to the present. In doing so, we attempt to learn, anticipate the future, and discuss what steps may be taken to prevent another 'winter'.
translated by 谷歌翻译
人工智能在医学成像,尤其是组织病理学成像方面具有巨大的希望。但是,人工智能算法无法完全解释决策过程中的思维过程。这种情况带来了解释性的问题,即黑匣子问题,人工智能应用程序的议程:一种算法只是在没有说明给定图像的原因的情况下做出响应。为了克服问题并提高解释性,可解释的人工智能(XAI)脱颖而出,并激发了许多研究人员的利益。在此背景下,本研究使用深度学习算法检查了一个新的原始数据集,并使用XAI应用程序之一(GRAD-CAM)可视化输出。之后,对这些图像的病理学家进行了详细的问卷调查。决策过程和解释都已验证,并测试了输出的准确性。这项研究的结果极大地帮助病理学家诊断旁结核病。
translated by 谷歌翻译