白质纤维聚类(WMFC)是白质细胞的重要策略,可以对健康和疾病中的白质连接进行定量分析。 WMFC通常以无监督的方式进行,而无需标记地面真相数据。尽管广泛使用的WMFC方法使用经典的机器学习技术显示出良好的性能,但深度学习的最新进展揭示了朝着快速有效的WMFC方向发展。在这项工作中,我们为WMFC,深纤维聚类(DFC)提出了一个新颖的深度学习框架,该框架解决了无监督的聚类问题,作为具有特定领域的借口任务,以预测成对的光纤距离。这使纤维表示能够在WMFC中学习已知的挑战,即聚类的敏感性对沿纤维的点排序的敏感性。我们设计了一种新颖的网络体系结构,该网络体系结构代表输入纤维作为点云,并允许从灰质拟合中纳入其他输入信息来源。因此,DFC利用有关白质纤维几何形状和灰质解剖结构的组合信息来改善纤维簇的解剖相干性。此外,DFC通过拒绝簇分配概率低的纤维来以自然方式进行异常去除。我们评估了三个独立获取的队列的DFC,包括来自220名性别,年龄(年轻和老年人)的220名个人的数据,以及不同的健康状况(健康对照和多种神经精神疾病)。我们将DFC与几种最先进的WMFC算法进行比较。实验结果表明,DFC在集群紧凑,泛化能力,解剖相干性和计算效率方面的表现出色。
translated by 谷歌翻译
扩散MRI拖拉术是一种先进的成像技术,可实现大脑白质连接的体内映射。白质拟层将拖拉机分类为簇或解剖学上有意义的区域。它可以量化和可视化全脑拖拉学。当前,大多数拟层方法都集中在深白质(DWM)上,而由于其复杂性,更少的方法解决了浅表白质(SWM)。我们提出了一种新型的两阶段深度学习的框架,即浅表白质分析(SUPWMA​​),该框架对全脑拖拉机的198个SWM簇进行了有效且一致的分析。一个基于点云的网络适应了我们的SWM分析任务,并且监督的对比度学习可以在SWM的合理流线和离群值之间进行更多的歧视性表示。我们在大规模拖拉机数据集上训练模型,包括来自标签的SWM簇和解剖学上难以置信的流线样本的简化样品,我们对六个不同年龄和健康状况的独立获取的数据集进行测试(包括新生儿和具有空间型脑肿瘤的患者) )。与几种最先进的方法相比,SupWMA在所有数据集上获得了高度一致,准确的SWM分析结果,在整个健康和疾病的寿命中都良好的概括。另外,SUPWMA​​的计算速度比其他方法快得多。
translated by 谷歌翻译
A tractogram is a virtual representation of the brain white matter. It is composed of millions of virtual fibers, encoded as 3D polylines, which approximate the white matter axonal pathways. To date, tractograms are the most accurate white matter representation and thus are used for tasks like presurgical planning and investigations of neuroplasticity, brain disorders, or brain networks. However, it is a well-known issue that a large portion of tractogram fibers is not anatomically plausible and can be considered artifacts of the tracking procedure. With Verifyber, we tackle the problem of filtering out such non-plausible fibers using a novel fully-supervised learning approach. Differently from other approaches based on signal reconstruction and/or brain topology regularization, we guide our method with the existing anatomical knowledge of the white matter. Using tractograms annotated according to anatomical principles, we train our model, Verifyber, to classify fibers as either anatomically plausible or non-plausible. The proposed Verifyber model is an original Geometric Deep Learning method that can deal with variable size fibers, while being invariant to fiber orientation. Our model considers each fiber as a graph of points, and by learning features of the edges between consecutive points via the proposed sequence Edge Convolution, it can capture the underlying anatomical properties. The output filtering results highly accurate and robust across an extensive set of experiments, and fast; with a 12GB GPU, filtering a tractogram of 1M fibers requires less than a minute. Verifyber implementation and trained models are available at https://github.com/FBK-NILab/verifyber.
translated by 谷歌翻译
白质图微观结构已显示出影响认知表现的神经心理学评分。但是,尚未尝试从白质图数据中预测这些分数。在本文中,我们提出了一个基于深度学习的框架,用于使用从扩散磁共振成像(DMRI)片段估计的微观结构测量结果进行神经心理学评分的预测,该框架的重点是基于接受语言的关键纤维纤维小道的接受性词汇评估任务的性能弓形筋膜(AF)。我们直接利用来自纤维道中所有点的信息,而无需按照传统上沿着光纤的平均数据进行扩散MRI Tractometry方法所要求的。具体而言,我们将AF表示为点云,每个点都有微观结构测量,从而可以采用基于点的神经网络。我们通过拟议的配对 - 塞亚姆损失来改善预测性能,该损失利用了有关连续神经心理学评分之间差异的信息。最后,我们提出了一种关键区域定位(CRL)算法来定位包含对预测结果有很大贡献的点的信息解剖区域。我们的方法对来自人类Connectome项目数据集的806名受试者的数据进行了评估。结果表明,与基线方法相比,神经心理评分的预测表现优异。我们发现,AF中的关键区域在受试者之间非常一致,额叶皮质区域的强大贡献最多(即,尾部中间额叶,pars opercularis和pars triangularis)与关键区域有着强烈的影响用于语言过程。
translated by 谷歌翻译
White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIber gEneration and bundle Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate WM bundles. Our framework allows the transition from one anatomical bundle definition to another with marginal calibrating time. This pipeline is built upon FINTA, CINTA, and GESTA methods that demonstrated how autoencoders can be used successfully for streamline filtering, bundling, and streamline generation in tractography. Our proposed method improves bundling coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase each bundle's spatial coverage while remaining anatomically meaningful. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundling framework
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
了解3D场景是自治代理的关键先决条件。最近,LIDAR和其他传感器已经以点云帧的时间序列形式提供了大量数据。在这项工作中,我们提出了一种新的问题 - 顺序场景流量估计(SSFE) - 该旨在预测给定序列中所有点云的3D场景流。这与先前研究的场景流程估计问题不同,这侧重于两个框架。我们介绍SPCM-NET架构,通过计算相邻点云之间的多尺度时空相关性,然后通过订单不变的复制单元计算多级时空相关性来解决这个问题。我们的实验评估证实,与仅使用两个框架相比,点云序列的复发处理导致SSFE明显更好。另外,我们证明可以有效地修改该方法,用于顺序点云预测(SPF),一种需要预测未来点云帧的相关问题。我们的实验结果是使用SSFE和SPF的新基准进行评估,包括合成和实时数据集。以前,场景流估计的数据集仅限于两个帧。我们为这些数据集提供非琐碎的扩展,用于多帧估计和预测。由于难以获得现实世界数据集的地面真理运动,我们使用自我监督的培训和评估指标。我们认为,该基准将在该领域的未来研究中关键。将可访问基准和型号的所有代码。
translated by 谷歌翻译
扩散MRI拖拉术是一种用于定量映射大脑结构连接性的高级成像技术。全脑拖拉机(WBT)数据包含数十万个单独的纤维流线(估计的大脑连接),并且通常会对这些数据进行分类,以创建用于数据分析应用(例如疾病分类)的紧凑表示形式。在本文中,我们提出了一种新颖的无拟合WBT分析框架Tractoformer,该框架在单个纤维流线的水平上利用拖拉术信息,并提供了使用变压器注意机制来解释结果的自然机制。 Tractoformer包括两个主要贡献。首先,我们提出了一个新颖而简单的2D图像表示WBT,Tractobedding,以编码3D纤维空间关系以及可以从单个纤维(例如FA或MD)计算的任何感兴趣的特征。其次,我们设计了一个基于视觉变压器(VIT)的网络,其中包括:1)数据增强以克服小数据集上过度适应模型的数据,2)识别判别纤维以解释结果,3)合奏学习以从不同大脑区域。在合成数据实验中,TractoFormer成功地识别了具有模拟组差异的判别纤维。在比较几种方法的疾病分类实验中,tractoformer在分类精神分裂症与对照方面达到了最高的精度。在左半球额叶和顶浅的白质区域中鉴定出判别性纤维,这些区域以前已被证明在精神分裂症患者中受到影响。
translated by 谷歌翻译
由于几个原因,很难聚集艺术品。一方面,识别基于领域知识和视觉感知的有意义的模式非常困难。另一方面,将传统的聚类和功能还原技术应用于高度尺寸的像素空间可能是无效的。为了解决这些问题,在本文中,我们提出了Delius:一种深入学习视觉艺术的深度学习方法。该方法使用预训练的卷积网络提取功能,然后将这些功能馈送到深层嵌入聚类模型中,在此,将输入数据映射到潜在空间的任务是通过在找到一组集群质心的任务,以在此任务进行优化。这个潜在空间。定量和定性实验结果表明了该方法的有效性。Delius对于与艺术分析有关的多个任务很有用,特别是在绘画数据集中发现的视觉链接检索和历史知识发现。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
在这里,我们提出了一种用于多模式神经影像融合学习(HGM)的异质图形神经网络。传统的基于GNN的模型通常假设大脑网络是具有单一类型节点和边缘的均匀图形。然而,巨大的文献已经显示出人脑的异质性,特别是在两个半球之间。均匀脑网络不足以模拟复杂的脑状态。因此,在这项工作中,我们首先用多型节点(即左右半球节点)和多型边缘(即半球形边缘)来模拟大脑网络作为异质图。此外,我们还提出了一种基于Hetergoneou Brain网络的自我监督的预训练策略,以解决由于复杂的模型和小样本大小而过度的问题。我们在两个数据集合的结果显示出拟议模型的优越性,以疾病预测任务的其他多模型方法。此外,消融实验表明,我们具有预训练策略的模型可以减轻训练样本大小有限的问题。
translated by 谷歌翻译
小儿肌肉骨骼系统的临床诊断依赖于医学成像检查的分析。在医学图像处理管道中,使用深度学习算法的语义分割使人可以自动生成患者特定的三维解剖模型,这对于形态学评估至关重要。但是,小儿成像资源的稀缺性可能导致单个深层分割模型的准确性和泛化性能降低。在这项研究中,我们建议设计一个新型的多任务多任务多域学习框架,在该框架中,单个分割网络对由解剖学的不同部分产生的多个数据集进行了优化。与以前的方法不同,我们同时考虑多个强度域和分割任务来克服小儿数据的固有稀缺性,同时利用成像数据集之间的共享特征。为了进一步提高概括能力,我们从自然图像分类中采用了转移学习方案,以及旨在在共享表示中促进域特异性群集的多尺度对比正则化,以及多连接解剖学先验来执行解剖学上一致的预测。我们评估了使用脚踝,膝盖和肩关节的三个稀缺和小儿成像数据集进行骨分割的贡献。我们的结果表明,所提出的方法在骰子指标中的表现优于个人,转移和共享分割方案,并具有统计学上足够的利润。拟议的模型为智能使用成像资源和更好地管理小儿肌肉骨骼疾病提供了新的观点。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
手动注释复杂的场景点云数据集昂贵且容易出错。为了减少对标记数据的依赖性,提出了一种名为Snapshotnet的新模型作为自我监督的特征学习方法,它直接用于复杂3D场景的未标记点云数据。 Snapshotnet Pipleine包括三个阶段。在快照捕获阶段,从点云场景中采样被定义为本地点的快照。快照可以是直接从真实场景捕获的本地3D扫描的视图,或者从大3D 3D点云数据集中的虚拟视图。也可以在不同的采样率或视野(FOV)的不同采样率或视野(FOV)中进行对快照进行,从而从场景中捕获比例信息。在特征学习阶段,提出了一种名为Multi-FoV对比度的新的预文本任务,以识别两个快照是否来自同一对象,而不是在同一FOV中或跨不同的FOV中。快照通过两个自我监督的学习步骤:对比学习步骤与零件和比例对比度,然后是快照聚类步骤以提取更高的级别语义特征。然后,通过首先培训在学习特征上的标准SVM分类器的培训中实现了弱监督的分割阶段,其中包含少量标记的快照。训练的SVM用于预测输入快照的标签,并使用投票过程将预测标签转换为整个场景的语义分割的点明智标签分配。实验是在语义3D数据集上进行的,结果表明,该方法能够从无任何标签的复杂场景数据的快照学习有效特征。此外,当与弱监管点云语义分割的SOA方法相比,该方法已经显示了优势。
translated by 谷歌翻译
生成一组高质量的对应关系或匹配是点云注册中最关键的步骤之一。本文通过共同考虑点对立的结构匹配来提出学习框架COTREG,以预测3D点云登记的对应关系。具体地,我们将这两个匹配转换为基于Wasserstein距离和基于Gromov-Wasserstein距离的优化。因此,建立对应关系的任务可以自然地重塑成耦合的最佳运输问题。此外,我们设计一个网络,以预测点云的每个点的置信度,其提供重叠区域信息以产生对应关系。我们的对应预测管道可以很容易地集成到基于学习的特征,如FCGF或FPFH等传统描述符。我们在3DMATCH,KITTI,3DCSR和ModelNet40基准上进行了全面的实验,显示了所提出的方法的最先进的性能。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译