由于几个原因,很难聚集艺术品。一方面,识别基于领域知识和视觉感知的有意义的模式非常困难。另一方面,将传统的聚类和功能还原技术应用于高度尺寸的像素空间可能是无效的。为了解决这些问题,在本文中,我们提出了Delius:一种深入学习视觉艺术的深度学习方法。该方法使用预训练的卷积网络提取功能,然后将这些功能馈送到深层嵌入聚类模型中,在此,将输入数据映射到潜在空间的任务是通过在找到一组集群质心的任务,以在此任务进行优化。这个潜在空间。定量和定性实验结果表明了该方法的有效性。Delius对于与艺术分析有关的多个任务很有用,特别是在绘画数据集中发现的视觉链接检索和历史知识发现。
translated by 谷歌翻译
Clustering is central to many data-driven application domains and has been studied extensively in terms of distance functions and grouping algorithms. Relatively little work has focused on learning representations for clustering. In this paper, we propose Deep Embedded Clustering (DEC), a method that simultaneously learns feature representations and cluster assignments using deep neural networks. DEC learns a mapping from the data space to a lower-dimensional feature space in which it iteratively optimizes a clustering objective. Our experimental evaluations on image and text corpora show significant improvement over state-of-the-art methods.
translated by 谷歌翻译
由于多源信息集成的能力,多视图聚类吸引了很多关注。尽管在过去几十年中已经提出了许多高级方法,但其中大多数通常忽略了弱监督信息的重要性,并且无法保留多种视图的特征属性,从而导致聚类性能不令人满意。为了解决这些问题,在本文中,我们提出了一种新颖的深度观看半监督聚类(DMSC)方法,该方法在网络填充过程中共同优化了三种损失,包括多视图集群损失,半监督的成对约束损失损失和多个自动编码器重建损失。具体而言,基于KL差异的多视图聚类损失被施加在多视图数据的共同表示上,以同时执行异质特征优化,多视图加权和聚类预测。然后,我们通过创新建议将成对约束集成到多视图聚类的过程中,通过执行所学到的必须链接样本的多视图表示(不能链接样本)是相似的(不同的),以便形成的聚类结构可以可以更可信。此外,与现有的竞争对手不同,该竞争对手仅保留网络填充期间每个异质分支的编码器,我们进一步建议调整完整的自动编码器框架,其中包含编码器和解码器。通过这种方式,可以缓解特定视图和视图共享特征空间的严重腐败问题,从而使整个培训程序更加稳定。通过在八个流行图像数据集上进行的全面实验,我们证明了我们提出的方法的性能要比最先进的多视图和单视竞争对手更好。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
被动射频(RF)感测和对老年护理房屋的人类日常活动监测是一个新兴的话题。微多普勒雷达是一种吸引人的解决方案,考虑到它们的非侵入性,深渗透和高距离范围。尽管在真实情景中未标记或较差的活动的情况下,但是使用多普勒雷达数据的无监督活动识别尚未得到注意。本研究提出了使用多普勒流的人类活动监测的两个无监督特征提取方法。这些包括基于局部离散余弦变换(DCT)的特征提取方法和基于局部熵的特征提取方法。此外,对于多普勒雷达数据,首次采用了卷积变分性自动化器(CVAE)特征提取的新应用。将三种特征提取架构与先前使用的卷积AutoEncoder(CAE)和基于主成分分析(PCA)和2DPCA的线性特征提取进行比较。使用K-Means和K-METOIDS进行无监督的聚类。结果表明,与CAE,PCA和2DPCA相比,基于DCT的方法,基于熵的方法和CVAE特征的优越性,具有超过5 \%-20 \%的平均精度。关于计算时间,两个提出的方法明显比现有的CVAE快得多。此外,对于高维数据可视化,考虑了三种歧管学习技术。比较方法,以对原始数据的投影以及编码的CVAE特征进行比较。当应用于编码的CVAE特征时,所有三种方法都显示出改善的可视化能力。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译
建模法检索和检索作为预测问题最近被出现为法律智能的主要方法。专注于法律文章检索任务,我们展示了一个名为Lamberta的深度学习框架,该框架被设计用于民法代码,并在意大利民法典上专门培训。为了我们的知识,这是第一项研究提出了基于伯特(来自变压器的双向编码器表示)学习框架的意大利法律制度对意大利法律制度的高级法律文章预测的研究,最近引起了深度学习方法的增加,呈现出色的有效性在几种自然语言处理和学习任务中。我们通过微调意大利文章或其部分的意大利预先训练的意大利预先训练的伯爵来定义Lamberta模型,因为法律文章作为分类任务检索。我们Lamberta框架的一个关键方面是我们构思它以解决极端的分类方案,其特征在于课程数量大,少量学习问题,以及意大利法律预测任务的缺乏测试查询基准。为了解决这些问题,我们为法律文章的无监督标签定义了不同的方法,原则上可以应用于任何法律制度。我们提供了深入了解我们Lamberta模型的解释性和可解释性,并且我们对单一标签以及多标签评估任务进行了广泛的查询模板实验分析。经验证据表明了Lamberta的有效性,以及对广泛使用的深度学习文本分类器和一些构思的几次学习者来说,其优越性是对属性感知预测任务的优势。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, kmeans, and uses the subsequent assignments as supervision to update the weights of the network. We apply DeepCluster to the unsupervised training of convolutional neural networks on large datasets like ImageNet and YFCC100M. The resulting model outperforms the current state of the art by a significant margin on all the standard benchmarks.
translated by 谷歌翻译
这项工作为聚类提供了无监督的深入判别分析。该方法基于深层神经网络,旨在最大程度地减少群集内差异,并以无监督的方式最大化集群间差异。该方法能够将数据投射到具有紧凑和不同分布模式的非线性低维潜在空间中,以便可以有效地识别数据簇。我们进一步提供了该方法的扩展,以便可以有效利用可用的图形信息来提高聚类性能。带有或没有图形信息的图像和非图像数据的广泛数值结果证明了所提出的方法的有效性。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
T分布式随机邻居嵌入(T-SNE)是复杂高维数据的良好的可视化方法。然而,原始T-SNE方法是非参数,随机的,并且通常不能很好地预测数据的全局结构,因为它强调当地社区。通过T-SNE作为参考,我们建议将深度神经网络(DNN)与数学接地的嵌入规则相结合,以进行高维数据嵌入的规则。我们首先介绍一个深嵌入的网络(DEN)框架,它可以从高维空间到低维嵌入的参数映射。 DEN具有灵活的架构,可容纳不同的输入数据(矢量,图像或张量)和损耗功能。为提高嵌入性能,建议递归培训策略利用书房提取的潜在陈述。最后,我们提出了一种两级损耗功能,将两个流行的嵌入方法的优点相结合,即T-SNE和均匀的歧管近似和投影(UMAP),以获得最佳可视化效果。我们将建议的方法命名为深度递归嵌入(DRE),其优化了递归培训策略和两级吊袜带的DEN。我们的实验表明,在各种公共数据库中,所提出的DRE方法对高维数据嵌入的优异性能。值得注意的是,我们的比较结果表明,我们拟议的DRE可能导致全球结构改善。
translated by 谷歌翻译
聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示的学习技术表示为矢量化形式的特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。深度学习在聚类中的巨大成功,最基本的机器学习任务之一以及该方向的最新进展的巨大成功所激发。 - 艺术方法。我们总结了深度聚类的基本组成部分,并通过设计深度表示学习和聚类之间的交互方式对现有方法进行了分类。此外,该调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了应有的挑战性主题,应将进一步的研究作为未来的方向。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
自我监督的视觉表示学习最近引起了重大的研究兴趣。虽然一种评估自我监督表示的常见方法是通过转移到各种下游任务,但我们研究了衡量其可解释性的问题,即了解原始表示中编码的语义。我们将后者提出为估计表示和手动标记概念空间之间的相互信息。为了量化这一点,我们介绍了一个解码瓶颈:必须通过简单的预测变量捕获信息,将概念映射到表示空间中的簇。我们称之为反向线性探测的方法为表示表示的语义敏感。该措施还能够检测出表示何时包含概念的组合(例如“红色苹果”),而不仅仅是单个属性(独立的“红色”和“苹果”)。最后,我们建议使用监督分类器自动标记大型数据集,以丰富用于探测的概念的空间。我们使用我们的方法来评估大量的自我监督表示形式,通过解释性对它们进行排名,并通过线性探针与标准评估相比出现的差异,并讨论了一些定性的见解。代码为:{\ Scriptsize {\ url {https://github.com/iro-cp/ssl-qrp}}}}}。
translated by 谷歌翻译
The latent space of autoencoders has been improved for clustering image data by jointly learning a t-distributed embedding with a clustering algorithm inspired by the neighborhood embedding concept proposed for data visualization. However, multivariate tabular data pose different challenges in representation learning than image data, where traditional machine learning is often superior to deep tabular data learning. In this paper, we address the challenges of learning tabular data in contrast to image data and present a novel Gaussian Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with multivariate Gaussian clusters. Unlike current methods, the proposed approach independently defines the Gaussian embedding and the target cluster distribution to accommodate any clustering algorithm in representation learning. A trained G-CEALS model extracts a quality embedding for unseen test data. Based on the embedding clustering accuracy, the average rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster embedding methods on seven tabular data sets. This paper shows one of the first algorithms to jointly learn embedding and clustering to improve multivariate tabular data representation in downstream clustering.
translated by 谷歌翻译
近年来,拥抱集群研究中的表演学习的深度学习技术引起了广泛的关注,产生了一个新开发的聚类范式,QZ。深度聚类(DC)。通常,DC型号大写AutoEncoders,以了解促进聚类过程的内在特征。如今,一个名为变变AualEncoder(VAE)的生成模型在DC研究中得到了广泛的认可。然而,平原VAE不足以察觉到综合潜在特征,导致细分性能恶化。本文提出了一种新的DC方法来解决这个问题。具体地,生成的逆势网络和VAE被聚结成了一种名为Fusion AutoEncoder(FAE)的新的AutoEncoder,以辨别出更多的辨别性表示,从而使下游聚类任务受益。此外,FAE通过深度剩余网络架构实施,进一步提高了表示学习能力。最后,将FAE的潜在空间转变为由深密神经网络的嵌入空间,用于彼此从彼此拉出不同的簇,并将数据点折叠在单个簇内。在几个图像数据集上进行的实验证明了所提出的DC模型对基线方法的有效性。
translated by 谷歌翻译
无监督学习的最有前途的方法之一是将深层表示学习和深入的聚类结合在一起。最近的一些作品建议使用深层神经网络同时学习表示形式,并通过在嵌入式特征之上定义聚类损失来执行聚类。但是,这些方法对数据不平衡和分布样本敏感。结果,这些方法通过将数据推向接近随机初始化的群集中心来优化聚类。当实例的数量在不同的类别中有所不同,或者很少有样本的群集的机会较小的机会被分配给良好的质心时,这是有问题的。为了克服这些局限性,我们引入了一个新的无监督框架,用于联合表述学习和图像群集。我们同时训练两个深度学习模型,一个捕获数据分布的深度表示网络,以及一个学习嵌入式功能并执行聚类的深度聚类网络。具体而言,聚类网络和学习表示网络都利用了我们提出的统计池块,该统计数据池块代表均值,方差和基数,以处理分布外样本和类不平衡。我们的实验表明,使用这些表示形式,可以大大改善各种图像数据集的不平衡图像聚类的结果。此外,当传输到分布数据集时,学到的表示形式可以很好地推广。
translated by 谷歌翻译