人类可以在各种时间尺度和层次级别上做出预测。因此,对事件编码的学习似乎起着至关重要的作用。在这项工作中,我们通过自主学习的潜在事件代码对层次预测的开发进行建模。我们提出了分层复发性神经网络结构,其诱导学习偏见促进了压缩感觉运动序列的稀疏潜在状态的发展。更高级别的网络学会了预测潜在国家倾向于改变的情况。使用模拟机器人操纵器,我们证明系统(i)学习了准确反映数据事件结构的潜在状态,(ii)在较高级别上开发有意义的时间抽象预测,(iii)生成了靶心,相似的行为在与婴儿的眼神追踪研究中发现的凝视行为。该体系结构为自主学习收集的经验的压缩层次编码以及对这些编码产生适应性行为的开发提供了一步。
translated by 谷歌翻译
在部分可观察域中的预测和规划的常见方法是使用经常性的神经网络(RNN),其理想地开发和维持关于隐藏,任务相关因素的潜伏。我们假设物理世界中的许多这些隐藏因素随着时间的推移是恒定的,而只是稀疏变化。为研究这一假设,我们提出了Gated $ L_0 $正规化的动态(Gatel0rd),一种新的经常性架构,它包含归纳偏差,以保持稳定,疏口改变潜伏状态。通过新颖的内部门控功能和潜在状态变化的$ l_0 $ norm的惩罚来实现偏差。我们证明Gatel0rd可以在各种部分可观察到的预测和控制任务中与最先进的RNN竞争或优于最先进的RNN。 Gatel0rd倾向于编码环境的基础生成因子,忽略了虚假的时间依赖性,并概括了更好的,提高了基于模型的规划和加强学习任务中的采样效率和整体性能。此外,我们表明可以容易地解释开发的潜在状态,这是朝着RNN中更好地解释的步骤。
translated by 谷歌翻译
灵活的目标指导行为是人类生活的一个基本方面。基于自由能最小化原理,主动推断理论从计算神经科学的角度正式产生了这种行为。基于该理论,我们介绍了一个输出型,时间预测的,模块化的人工神经网络体系结构,该建筑处理感觉运动信息,渗透到世界上与行为相关的方面,并引起高度灵活的,目标定向的行为。我们表明,我们的建筑经过端对端训练,以最大程度地减少自由能的近似值,它会发展出可以将其解释为负担能力地图的潜在状态。也就是说,新兴的潜在状态表明哪种行动导致哪些效果取决于局部环境。结合主动推断,我们表明可以调用灵活的目标指导行为,并结合新兴的负担能力图。结果,我们的模拟代理会在连续的空间中灵活地转向,避免与障碍物发生碰撞,并且更喜欢高确定性地导致目标的途径。此外,我们表明,学识渊博的代理非常适合跨环境的零拍概括:在训练少数固定环境中的代理商在具有障碍和其他影响其行为的固定环境中,它在程序生成的环境中表现出色,其中包含不同量的环境不同位置的各种尺寸的障碍和地形。
translated by 谷歌翻译
大脑减轻了对自我产生的遗产的反应(例如,我们不能自我痒痒)。这种现象是这种现象,称为感官衰减,天生,还是通过学习获得的?为了探讨后一种可能性,我们创建了由感官(Proprioceptive和Extleceptive),协会和行政区域组成的神经网络模型。由网络控制的模拟机器人学会了以获得具有自我产生或外部产生的脱敏反馈的电动机图案。我们发现,机器人首先在学习早期阶段的自我产生和外部产生的条件下的感觉和关联区域中的响应增加,但随后,它逐渐衰减在仅用于自我产生的条件的感觉区域中的反应。机器人自发地获得了通过切换执行区域的神经状态的条件来切​​换(衰减或放大)响应的容量。这表明通过学习自动组织网络内部感官信息流的主动控制。我们还发现,调制感官信息流程的天然改变诱导类似于精神分裂症和自闭症谱系疾病的一些特征。本研究提供了一种关于神经机制潜在的感知现象和精神病疾病的新颖性观点。
translated by 谷歌翻译
Planning has been very successful for control tasks with known environment dynamics. To leverage planning in unknown environments, the agent needs to learn the dynamics from interactions with the world. However, learning dynamics models that are accurate enough for planning has been a long-standing challenge, especially in image-based domains. We propose the Deep Planning Network (PlaNet), a purely model-based agent that learns the environment dynamics from images and chooses actions through fast online planning in latent space. To achieve high performance, the dynamics model must accurately predict the rewards ahead for multiple time steps. We approach this using a latent dynamics model with both deterministic and stochastic transition components. Moreover, we propose a multi-step variational inference objective that we name latent overshooting. Using only pixel observations, our agent solves continuous control tasks with contact dynamics, partial observability, and sparse rewards, which exceed the difficulty of tasks that were previously solved by planning with learned models. PlaNet uses substantially fewer episodes and reaches final performance close to and sometimes higher than strong model-free algorithms.
translated by 谷歌翻译
许多增强学习(RL)环境包括独立实体,这些实体稀疏地互动。在这种环境中,RL代理商在任何特定情况下对其他实体的影响仅受限。我们在这项工作中的想法是,通过了解代理人可以通过其行动的何时以及何时何地效力,可以有效地指导。为实现这一目标,我们根据条件互信息介绍\ emph {情况依赖性因果影响},并表明它可以可靠地检测影响的态度。然后,我们提出了几种方法将这种措施集成到RL算法中,以改善探索和禁止政策学习。所有修改的算法都显示出机器人操纵任务的数据效率强劲增加。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
值得怀疑的是,动物具有其四肢的完美逆模型(例如,必须在每个关节上应用什么肌肉收缩才能到达太空中的特定位置)。但是,在机器人控制中,将ARM的最终效应器移至目标位置或沿目标轨迹需要准确的前进和逆模型。在这里,我们证明,通过从交互中学习过渡(正向)模型,我们可以使用它来推动摊销策略的学习。因此,我们重新审视了与深度主动推理框架有关的策略优化,并描述了一个模块化神经网络体系结构,该模块化神经网络体系结构同时从预测错误中学习了系统动力学以及生成合适的连续控制命令以达到所需参考位置的随机策略。我们通过将模型与线性二次调节器的基线进行比较来评估该模型,并以其他步骤来朝着类似人类的运动控制方向进行比较。
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
电机控制中的一个主要问题是了解大脑计划的计划,并在面对延迟和嘈杂的刺激面前执行适当的运动。解决这种控制问题的突出框架是最佳反馈控制(OFC)。 OFC通过将嘈杂的感官刺激和使用卡尔曼滤波器或其扩展集成内部模型的预测来生成优化行为相关标准的控制操作。然而,缺乏Kalman滤波和控制的令人满意的神经模型,因为现有的提案具有以下限制:不考虑感官反馈的延迟,交替阶段的训练,以及需要了解噪声协方差矩阵,以及系统动态。此外,这些研究中的大多数考虑了卡尔曼滤波的隔离,而不是与控制联合。为了解决这些缺点,我们介绍了一种新的在线算法,它将自适应卡尔曼滤波与模型自由控制方法相结合(即,策略梯度算法)。我们在具有局部突触塑性规则的生物合理的神经网络中实现该算法。该网络执行系统识别和卡尔曼滤波,而无需多个阶段,具有不同的更新规则或噪声协方差的知识。在内部模型的帮助下,它可以使用延迟感官反馈执行状态估计。它在不需要任何信息知识的情况下了解控制政策,从而避免需要重量运输。通过这种方式,我们的OFC实施解决了在存在刺激延迟存在下生产适当的感官电动机控制所需的信用分配问题。
translated by 谷歌翻译
复发状态空间模型(RSSM)是时间序列数据和系统标识中学习模式的高度表达模型。但是,这些模型假定动力学是固定和不变的,在现实世界中,这种动力学很少发生。许多控制应用程序通常表现出具有相似但不相同动力学的任务,这些任务可以建模为潜在变量。我们介绍了隐藏的参数复发状态空间模型(HIP-RSSM),该框架为具有低维的潜在因素集的相关动态系统的家庭参数。我们提出了一种对这种高斯图形模型的学习和执行推理的简单有效方法,该模型避免了诸如变异推理之类的近似值。我们表明,HIP-RSSM在现实世界系统和仿真上的几个挑战性机器人基准上都优于RSSM和竞争性的多任务模型。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
认知心理学和相关学科已经确定了几种关键机制,使智能生物学药物能够学会解决复杂的问题。存在紧迫的证据表明,这些物种中能够解决问题技能的认知机制以等级心理表征为基础。在为人工代理和机器人提供基于学习的问题解决能力的最有希望的计算方法之一是分层增强学习。但是,到目前为止,现有的计算方法尚未能够为人工代理提供与智能动物相媲美的解决问题的能力,包括人类和非人类灵长类动物,乌鸦或章鱼。在这里,我们首先调查了认知心理学和相关学科的文献,发现许多重要的心理机制涉及组成抽象,好奇心和前瞻性模型。然后,我们将这些见解与当代分层的增强学习方法联系起来,并确定实现这些机制的关键机器智能方法。作为我们的主要结果,我们表明所有重要的认知机制均已在孤立的计算体系结构中独立实施,并且缺乏适当整合它们的方法。我们希望我们的结果指导更复杂的认知启发性层次结构方法的发展,以便未来的人工代理在智能动物水平上实现解决问题的性能。
translated by 谷歌翻译
强化学习是机器人抓握的一种有前途的方法,因为它可以在困难的情况下学习有效的掌握和掌握政策。但是,由于问题的高维度,用精致的机器人手来实现类似人类的操纵能力是具有挑战性的。尽管可以采用奖励成型或专家示范等补救措施来克服这个问题,但它们通常导致过分简化和有偏见的政策。我们介绍了Dext-Gen,这是一种在稀疏奖励环境中灵巧抓握的强化学习框架,适用于各种抓手,并学习无偏见和复杂的政策。通过平滑方向表示实现了抓地力和物体的完全方向控制。我们的方法具有合理的培训时间,并提供了包括所需先验知识的选项。模拟实验证明了框架对不同方案的有效性和适应性。
translated by 谷歌翻译
我们认为机器人布操纵的开放目标规划问题。我们系统的核心是一个神经网络,被培训为在操纵下的布料行为的前向模型,通过BackProjagation进行规划。我们介绍了一种基于神经网络的例程,用于估计来自Voxel输入的网格表示,并在内部的网格格式执行规划。我们通过明确的认知不确定性信号解决规划不完全域知识的问题。该信号由前向模型网络的两个实例之间的预测发散计算,并用于避免在规划期间的认识性不确定性。最后,我们引入用于处理掌握点的限制到一个离散的候选者的逻辑,以适应机器人硬件施加的避免结构。我们评估系统的网格估计,预测和规划能力,用于模拟布,用于一到三个操纵的序列。比较实验证实,与基于体素的规划相比,基于估计网格的规划提高了准确性,并且这种认知不确定性避免在不完全域知识的条件下提高性能。规划时间成本是几秒钟。我们还在机器人硬件上呈现定性结果。
translated by 谷歌翻译
我们研究了实时的协作机器人(Cobot)处理,Cobot在人类命令下操纵工件。当人类直接处理工件时,这是有用的。但是,在可能的操作中难以使COBOT易于命令和灵活。在这项工作中,我们提出了一个实时协作机器人处理(RTCOHand)框架,其允许通过用户定制的动态手势控制COBOT。由于用户,人类运动不确定性和嘈杂的人类投入的变化,这很难。我们将任务塑造为概率的生成过程,称为条件协作处理过程(CCHP),并从人类的合作中学习。我们彻底评估了CCHP的适应性和稳健性,并将我们的方法应用于Kinova Gen3机器人手臂的实时Cobot处理任务。我们实现了与经验丰富和新用户的无缝人员合作。与古典控制器相比,RTCEHAND允许更复杂的操作和更低的用户认知负担。它还消除了对试验和错误的需求,在安全关键任务中呈现。
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
人类通常通过将它们分解为更容易的子问题,然后结合子问题解决方案来解决复杂的问题。这种类型的组成推理允许在解决共享一部分基础构图结构的未来任务时重复使用子问题解决方案。在持续或终身的强化学习(RL)设置中,将知识分解为可重复使用的组件的能力将使代理通过利用积累的组成结构来快速学习新的RL任务。我们基于神经模块探索一种特定形式的组成形式,并提出了一组RL问题,可以直观地接受组成溶液。从经验上讲,我们证明了神经组成确实捕获了问题空间的基本结构。我们进一步提出了一种构图终身RL方法,该方法利用累积的神经成分来加速学习未来任务的学习,同时通过离线RL通过离线RL保留以前的RL,而不是重播经验。
translated by 谷歌翻译