从3D点云数据学习迅速获得了势头,这是通过深度学习的成功和图像的增加的3D数据的可用性。在本文中,我们的目标是构建直接在源点云的表面上工作的各向异性卷积。这是具有挑战性的,因为缺乏在表面上的切向方向的全局坐标系。我们介绍一个名为Deltaconv的新卷积运算符,将几何运算符从外部计算结合起来,以便在点云上构建各向异性滤波器。因为这些运算符在标量和向量字段上定义,所以我们将网络分开到标量和矢量流,由运算符连接。矢量流使网络能够明确表示,评估和处理方向信息。我们的卷轴稳健且易于实施,并显示出与最先进的基准相比提高准确性,同时加快培训和推理。
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译
We present Kernel Point Convolution 1 (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in Euclidean space by kernel points, and applied to the input points close to them. Its capacity to use any number of kernel points gives KP-Conv more flexibility than fixed grid convolutions. Furthermore, these locations are continuous in space and can be learned by the network. Therefore, KPConv can be extended to deformable convolutions that learn to adapt kernel points to local geometry. Thanks to a regular subsampling strategy, KPConv is also efficient and robust to varying densities. Whether they use deformable KPConv for complex tasks, or rigid KPconv for simpler tasks, our networks outperform state-of-the-art classification and segmentation approaches on several datasets. We also offer ablation studies and visualizations to provide understanding of what has been learned by KPConv and to validate the descriptive power of deformable KPConv.
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
Deep neural networks have enjoyed remarkable success for various vision tasks, however it remains challenging to apply CNNs to domains lacking a regular underlying structures such as 3D point clouds. Towards this we propose a novel convolutional architecture, termed Spi-derCNN, to efficiently extract geometric features from point clouds. Spi-derCNN is comprised of units called SpiderConv, which extend convolutional operations from regular grids to irregular point sets that can be embedded in R n , by parametrizing a family of convolutional filters. We design the filter as a product of a simple step function that captures local geodesic information and a Taylor polynomial that ensures the expressiveness. SpiderCNN inherits the multi-scale hierarchical architecture from classical CNNs, which allows it to extract semantic deep features. Experiments on ModelNet40[4] demonstrate that SpiderCNN achieves state-of-the-art accuracy 92.4% on standard benchmarks, and shows competitive performance on segmentation task.
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
学习3D点云的新表示形式是3D视觉中的一个活跃研究领域,因为订单不变的点云结构仍然对神经网络体系结构的设计构成挑战。最近的作品探索了学习全球或本地功能或两者兼而有之,但是均未通过分析点的局部方向分布来捕获上下文形状信息的早期方法。在本文中,我们利用点附近的点方向分布,以获取点云的表现力局部邻里表示。我们通过将给定点的球形邻域分为预定义的锥体来实现这一目标,并将每个体积内部的统计数据用作点特征。这样,本地贴片不仅可以由所选点的最近邻居表示,还可以考虑沿该点周围多个方向定义的点密度分布。然后,我们能够构建涉及依赖MLP(多层感知器)层的Odfblock的方向分布函数(ODF)神经网络。新的ODFNET模型可实现ModelNet40和ScanObjectNN数据集的对象分类的最新精度,并在Shapenet S3DIS数据集上进行分割。
translated by 谷歌翻译
Unlike images which are represented in regular dense grids, 3D point clouds are irregular and unordered, hence applying convolution on them can be difficult. In this paper, we extend the dynamic filter to a new convolution operation, named PointConv. PointConv can be applied on point clouds to build deep convolutional networks. We treat convolution kernels as nonlinear functions of the local coordinates of 3D points comprised of weight and density functions. With respect to a given point, the weight functions are learned with multi-layer perceptron networks and density functions through kernel density estimation. The most important contribution of this work is a novel reformulation proposed for efficiently computing the weight functions, which allowed us to dramatically scale up the network and significantly improve its performance. The learned convolution kernel can be used to compute translation-invariant and permutation-invariant convolution on any point set in the 3D space. Besides, PointConv can also be used as deconvolution operators to propagate features from a subsampled point cloud back to its original resolution. Experiments on ModelNet40, ShapeNet, and ScanNet show that deep convolutional neural networks built on PointConv are able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds. Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure.
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
由于缺乏连接性信息,对局部表面几何形状进行建模在3D点云的理解中具有挑战性。大多数先前的作品使用各种卷积操作模拟本地几何形状。我们观察到,卷积可以等效地分解为局部和全球成分的加权组合。通过这种观察,我们明确地将这两个组件解散了,以便可以增强局部的组件并促进局部表面几何形状的学习。具体而言,我们提出了Laplacian单元(LU),这是一个简单而有效的建筑单元,可以增强局部几何学的学习。广泛的实验表明,配备有LU的网络在典型的云理解任务上实现了竞争性或卓越的性能。此外,通过建立平均曲率流之间的连接,基于曲率的LU进行了进一步研究,以解释LU的自适应平滑和锐化效果。代码将可用。
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
通过当地地区的点特征聚合来捕获的细粒度几何是对象识别和场景理解在点云中的关键。然而,现有的卓越点云骨架通常包含最大/平均池用于局部特征聚集,这在很大程度上忽略了点的位置分布,导致细粒结构组装不足。为了缓解这一瓶颈,我们提出了一个有效的替代品,可以使用新颖的图形表示明确地模拟了本地点之间的空间关系,并以位置自适应方式聚合特征,从而实现位置敏感的表示聚合特征。具体而言,Papooling分别由两个关键步骤,图形结构和特征聚合组成,分别负责构造与将中心点连接的边缘与本地区域中的每个相邻点连接的曲线图组成,以将它们的相对位置信息映射到通道 - 明智的细心权重,以及基于通过图形卷积网络(GCN)的生成权重自适应地聚合局部点特征。 Papooling简单而且有效,并且足够灵活,可以随时为PointNet ++和DGCNN等不同的流行律源,作为即插即说运算符。关于各种任务的广泛实验,从3D形状分类,部分分段对场景分割良好的表明,伪装可以显着提高预测准确性,而具有最小的额外计算开销。代码将被释放。
translated by 谷歌翻译
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
事实证明,与对称性的对称性在深度学习研究中是一种强大的归纳偏见。关于网格处理的最新著作集中在各种天然对称性上,包括翻译,旋转,缩放,节点排列和仪表变换。迄今为止,没有现有的体系结构与所有这些转换都不相同。在本文中,我们提出了一个基于注意力的网格数据的架构,该体系结构与上述所有转换相似。我们的管道依赖于相对切向特征的使用:一种简单,有效,等效性的替代品,可作为输入作为输入。有关浮士德和TOSCA数据集的实验证实,我们提出的架构在这些基准测试中的性能提高了,并且确实是对各种本地/全球转换的均等,因此具有强大的功能。
translated by 谷歌翻译
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
translated by 谷歌翻译
我们提出CPT:卷积点变压器 - 一种用于处理3D点云数据的非结构化性质的新型深度学习架构。 CPT是对现有关注的卷曲神经网络以及以前的3D点云处理变压器的改进。由于其在创建基于新颖的基于注意力的点集合嵌入通过制作用于处理动态局部点设定的邻域的卷积投影层的嵌入来实现这一壮举。结果点设置嵌入对输入点的排列是强大的。我们的小说CPT块在网络结构中通过动态图计算获得的本地邻居构建。它是完全可差异的,可以像卷积层一样堆叠,以学习点的全局属性。我们评估我们的模型在ModelNet40,ShapEnet​​部分分割和S3DIS 3D室内场景语义分割数据集等标准基准数据集上,以显示我们的模型可以用作各种点云处理任务的有效骨干,与现有状态相比 - 艺术方法。
translated by 谷歌翻译
由于缺乏连接性信息,即边缘,学习点云是具有挑战性的。尽管现有的边缘感知方法可以通过建模边缘来改善性能,但边缘如何促进改进尚不清楚。在这项研究中,我们提出了一种自动学习以增强/抑制边缘的方法,同时保持其工作机制清晰。首先,我们从理论上弄清楚边缘增强/抑制作用是如何工作的。其次,我们通过实验验证边缘增强/抑制行为。第三,我们从经验上表明这种行为可以提高性能。通常,我们观察到所提出的方法在点云分类和细分任务中实现了竞争性能。
translated by 谷歌翻译
3D网格的几何特征学习是计算机图形的核心,对于许多视觉应用非常重要。然而,由于缺乏所需的操作和/或其有效的实现,深度学习目前滞后于异构3D网格的层次建模。在本文中,我们提出了一系列模块化操作,以实现异构3D网格的有效几何深度学习。这些操作包括网格卷曲,(UN)池和高效的网格抽取。我们提供这些操作的开源实施,统称为\ Texit {Picasso}。 Picasso的网格抽取模块是GPU加速的模块,可以在飞行中加工一批用于深度学习的网格。我们(联合国)汇集操作在不同分辨率的网络层跨网络层计算新创建的神经元的功能。我们的网格卷曲包括FaceT2Vertex,Vertex2Facet和FaceT2Facet卷积,用于利用VMF混合物和重心插值来包含模糊建模。利用Picasso的模块化操作,我们贡献了一个新型的分层神经网络Picassonet-II,以了解3D网格的高度辨别特征。 Picassonet-II接受原始地理学和Mesh Facet的精细纹理作为输入功能,同时处理完整场景网格。我们的网络达到了各种基准的形状分析和场景的竞争性能。我们在github https://github.com/enyahermite/picasso发布Picasso和Picassonet-II。
translated by 谷歌翻译