由于缺乏连接性信息,对局部表面几何形状进行建模在3D点云的理解中具有挑战性。大多数先前的作品使用各种卷积操作模拟本地几何形状。我们观察到,卷积可以等效地分解为局部和全球成分的加权组合。通过这种观察,我们明确地将这两个组件解散了,以便可以增强局部的组件并促进局部表面几何形状的学习。具体而言,我们提出了Laplacian单元(LU),这是一个简单而有效的建筑单元,可以增强局部几何学的学习。广泛的实验表明,配备有LU的网络在典型的云理解任务上实现了竞争性或卓越的性能。此外,通过建立平均曲率流之间的连接,基于曲率的LU进行了进一步研究,以解释LU的自适应平滑和锐化效果。代码将可用。
translated by 谷歌翻译
由于缺乏连接性信息,即边缘,学习点云是具有挑战性的。尽管现有的边缘感知方法可以通过建模边缘来改善性能,但边缘如何促进改进尚不清楚。在这项研究中,我们提出了一种自动学习以增强/抑制边缘的方法,同时保持其工作机制清晰。首先,我们从理论上弄清楚边缘增强/抑制作用是如何工作的。其次,我们通过实验验证边缘增强/抑制行为。第三,我们从经验上表明这种行为可以提高性能。通常,我们观察到所提出的方法在点云分类和细分任务中实现了竞争性能。
translated by 谷歌翻译
3D点云可以灵活地表示连续表面,可用于各种应用;但是,缺乏结构信息使点云识别具有挑战性。最近的边缘感知方法主要使用边缘信息作为描述局部结构以促进学习的额外功能。尽管这些方法表明,将边缘纳入网络设计是有益的,但它们通常缺乏解释性,使用户想知道边缘如何有所帮助。为了阐明这一问题,在这项研究中,我们提出了以可解释方式处理边缘的扩散单元(DU),同时提供了不错的改进。我们的方法可以通过三种方式解释。首先,我们从理论上表明,DU学会了执行任务呈纤维边缘的增强和抑制作用。其次,我们通过实验观察并验证边缘增强和抑制行为。第三,我们从经验上证明,这种行为有助于提高绩效。在具有挑战性的基准上进行的广泛实验验证了DU在可解释性和绩效增长方面的优势。具体而言,我们的方法使用S3DIS使用Shapenet零件和场景分割来实现对象零件分割的最新性能。我们的源代码将在https://github.com/martianxiu/diffusionunit上发布。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Point cloud analysis is challenging due to irregularity and unordered data structure. To capture the 3D geometries, prior works mainly rely on exploring sophisticated local geometric extractors using convolution, graph, or attention mechanisms. These methods, however, incur unfavorable latency during inference, and the performance saturates over the past few years. In this paper, we present a novel perspective on this task. We notice that detailed local geometrical information probably is not the key to point cloud analysis -- we introduce a pure residual MLP network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively. Equipped with a proposed lightweight geometric affine module, PointMLP delivers the new state-of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy. We emphasize that PointMLP achieves this strong performance without any sophisticated operations, hence leading to a superior inference speed. Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark. We hope our PointMLP may help the community towards a better understanding of point cloud analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.
translated by 谷歌翻译
卷积神经网络(CNNS)在2D计算机视觉中取得了很大的突破。然而,它们的不规则结构使得难以在网格上直接利用CNNS的潜力。细分表面提供分层多分辨率结构,其中闭合的2 - 歧管三角网格中的每个面正恰好邻近三个面。本文推出了这两种观察,介绍了具有环形细分序列连接的3D三角形网格的创新和多功能CNN框架。在2D图像中的网格面和像素之间进行类比允许我们呈现网状卷积操作者以聚合附近面的局部特征。通过利用面部街区,这种卷积可以支持标准的2D卷积网络概念,例如,可变内核大小,步幅和扩张。基于多分辨率层次结构,我们利用汇集层,将四个面均匀地合并成一个和上采样方法,该方法将一个面分为四个。因此,许多流行的2D CNN架构可以容易地适应处理3D网格。可以通过自我参数化来回收具有任意连接的网格,以使循环细分序列连接,使子变量是一般的方法。广泛的评估和各种应用展示了SubDIVNet的有效性和效率。
translated by 谷歌翻译
标准空间卷积假设具有常规邻域结构的输入数据。现有方法通常通过修复常规“视图”来概括对不规则点云域的卷积。固定的邻域大小,卷积内核大小对于每个点保持不变。然而,由于点云不是像图像的结构,所以固定邻权给出了不幸的感应偏压。我们提出了一个名为digress图卷积(diffconv)的新图表卷积,不依赖常规视图。DiffConv在空间 - 变化和密度扩张的邻域上操作,其进一步由学习屏蔽的注意机制进行了进一步调整。我们在ModelNet40点云分类基准测试中验证了我们的模型,获得最先进的性能和更稳健的噪声,以及更快的推广速度。
translated by 谷歌翻译
Unlike images which are represented in regular dense grids, 3D point clouds are irregular and unordered, hence applying convolution on them can be difficult. In this paper, we extend the dynamic filter to a new convolution operation, named PointConv. PointConv can be applied on point clouds to build deep convolutional networks. We treat convolution kernels as nonlinear functions of the local coordinates of 3D points comprised of weight and density functions. With respect to a given point, the weight functions are learned with multi-layer perceptron networks and density functions through kernel density estimation. The most important contribution of this work is a novel reformulation proposed for efficiently computing the weight functions, which allowed us to dramatically scale up the network and significantly improve its performance. The learned convolution kernel can be used to compute translation-invariant and permutation-invariant convolution on any point set in the 3D space. Besides, PointConv can also be used as deconvolution operators to propagate features from a subsampled point cloud back to its original resolution. Experiments on ModelNet40, ShapeNet, and ScanNet show that deep convolutional neural networks built on PointConv are able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds. Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure.
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer(PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation, semantic segmentation and normal estimation tasks.
translated by 谷歌翻译
Point clouds are characterized by irregularity and unstructuredness, which pose challenges in efficient data exploitation and discriminative feature extraction. In this paper, we present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology as a completely regular 2D point geometry image (PGI) structure, in which coordinates of spatial points are captured in colors of image pixels. \mr{Intuitively, Flattening-Net implicitly approximates a locally smooth 3D-to-2D surface flattening process while effectively preserving neighborhood consistency.} \mr{As a generic representation modality, PGI inherently encodes the intrinsic property of the underlying manifold structure and facilitates surface-style point feature aggregation.} To demonstrate its potential, we construct a unified learning framework directly operating on PGIs to achieve \mr{diverse types of high-level and low-level} downstream applications driven by specific task networks, including classification, segmentation, reconstruction, and upsampling. Extensive experiments demonstrate that our methods perform favorably against the current state-of-the-art competitors. We will make the code and data publicly available at https://github.com/keeganhk/Flattening-Net.
translated by 谷歌翻译
Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications in 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the quality of completed point clouds is still needed to be further enhanced to meet the practical utilization. Therefore, this work aims to conduct a comprehensive survey on various methods, including point-based, convolution-based, graph-based, and generative model-based approaches, etc. And this survey summarizes the comparisons among these methods to provoke further research insights. Besides, this review sums up the commonly used datasets and illustrates the applications of point cloud completion. Eventually, we also discussed possible research trends in this promptly expanding field.
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译
通过当地地区的点特征聚合来捕获的细粒度几何是对象识别和场景理解在点云中的关键。然而,现有的卓越点云骨架通常包含最大/平均池用于局部特征聚集,这在很大程度上忽略了点的位置分布,导致细粒结构组装不足。为了缓解这一瓶颈,我们提出了一个有效的替代品,可以使用新颖的图形表示明确地模拟了本地点之间的空间关系,并以位置自适应方式聚合特征,从而实现位置敏感的表示聚合特征。具体而言,Papooling分别由两个关键步骤,图形结构和特征聚合组成,分别负责构造与将中心点连接的边缘与本地区域中的每个相邻点连接的曲线图组成,以将它们的相对位置信息映射到通道 - 明智的细心权重,以及基于通过图形卷积网络(GCN)的生成权重自适应地聚合局部点特征。 Papooling简单而且有效,并且足够灵活,可以随时为PointNet ++和DGCNN等不同的流行律源,作为即插即说运算符。关于各种任务的广泛实验,从3D形状分类,部分分段对场景分割良好的表明,伪装可以显着提高预测准确性,而具有最小的额外计算开销。代码将被释放。
translated by 谷歌翻译
学习地区内部背景和区域间关系是加强点云分析的特征表示的两项有效策略。但是,在现有方法中没有完全强调的统一点云表示的两种策略。为此,我们提出了一种名为点关系感知网络(PRA-NET)的小说框架,其由区域内结构学习(ISL)模块和区域间关系学习(IRL)模块组成。ISL模块可以通过可差的区域分区方案和基于代表的基于点的策略自适应和有效地将本地结构信息动态地集成到点特征中,而IRL模块可自适应和有效地捕获区域间关系。在涵盖形状分类,关键点估计和部分分割的几个3D基准测试中的广泛实验已经验证了PRA-Net的有效性和泛化能力。代码将在https://github.com/xiwuchen/pra-net上获得。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel endto-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-theart robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https: //github.com/yanx27/PointASNL.
translated by 谷歌翻译