众所周知,使用深钢筋学习(DRL)训练的神经网络政策容易受到对抗攻击的影响。在本文中,我们将表现出的攻击视为外部环境管理的观察空间中的扰动。这些攻击已被证明可显着降低政策绩效。我们将注意力集中在训练有素的确定性和随机神经网络策略上,在持续控制基准测试的背景下受到四次经过精心研究的观察空间对抗性攻击。为了防止这些攻击,我们提出了使用检测和降解模式的新型防御策略。与以前的对抗训练方法在对抗场景中采样数据不同,我们的解决方案不需要在受到攻击的环境中进行采样数据,从而大大降低了训练期间的风险。详细的实验结果表明,我们的技术与最先进的对抗训练方法相媲美。
translated by 谷歌翻译
最近的工作表明,深增强学习(DRL)政策易受对抗扰动的影响。对手可以通过扰乱药剂观察到的环境来误导DRL代理商的政策。现有攻击原则上是可行的,但在实践中面临挑战,例如通过太慢,无法实时欺骗DRL政策。我们表明,使用通用的对冲扰动(UAP)方法来计算扰动,独立于应用它们的各个输入,可以有效地欺骗DRL策略。我们描述了三种这样的攻击变体。通过使用三个Atari 2600游戏的广泛评估,我们表明我们的攻击是有效的,因为它们完全降低了三种不同的DRL代理商的性能(高达100%,即使在扰乱的$ L_ infty $绑定时也很小为0.01)。与不同DRL策略的响应时间(平均0.6ms)相比,它比不同DRL策略的响应时间(0.6ms)更快,并且比使用对抗扰动的前攻击更快(平均1.8ms)。我们还表明,我们的攻击技术是高效的,平均地产生0.027ms的在线计算成本。使用涉及机器人运动的两个进一步任务,我们确认我们的结果概括了更复杂的DRL任务。此外,我们证明了已知防御的有效性降低了普遍扰动。我们提出了一种有效的技术,可检测针对DRL政策的所有已知的对抗性扰动,包括本文呈现的所有普遍扰动。
translated by 谷歌翻译
深增强学习模型容易受到对抗的攻击,可以通过操纵受害者的观察来减少受害者的累积预期奖励。尽管以前的优化基于优化的方法效率,用于在监督学习中产生对抗性噪声,因此这些方法可能无法实现最低的累积奖励,因为它们通常不会探索环境动态。在本文中,我们提供了一个框架,以通过重新制定函数空间中加固学习的对抗攻击问题来更好地了解现有方法。我们的重构在有针对性攻击的功能空间中产生最佳对手,通过通用的两级框架来排斥它们。在第一阶段,我们通过黑客攻击环境来培训欺骗性政策,并发现一组轨迹路由到最低奖励或最坏情况性能。接下来,对手误导受害者通过扰乱观察来模仿欺骗性政策。与现有方法相比,我们理论上表明我们的对手在适当的噪声水平下更强大。广泛的实验展示了我们在效率和效力方面的优越性,在Atari和Mujoco环境中实现了最先进的性能。
translated by 谷歌翻译
最近的研究表明,深层增强学习剂容易受到代理投入的小对抗扰动,这提出了对在现实世界中部署这些药剂的担忧。为了解决这个问题,我们提出了一个主要的框架,是培训加强学习代理的主要框架,以改善鲁棒性,以防止$ L_P $ -NORM偏见的对抗性攻击。我们的框架与流行的深度加强学习算法兼容,我们用深Q学习,A3C和PPO展示了其性能。我们在三个深度RL基准(Atari,Mujoco和Procgen)上进行实验,以展示我们稳健的培训算法的有效性。我们的径向-RL代理始终如一地占据了不同强度的攻击时的现有方法,并且培训更加计算效率。此外,我们提出了一种新的评估方法,称为贪婪最坏情况奖励(GWC)来衡量深度RL代理商的攻击不良鲁棒性。我们表明GWC可以有效地评估,并且对最糟糕的对抗攻击序列是对奖励的良好估计。用于我们实验的所有代码可在https://github.com/tuomaso/radial_rl_v2上获得。
translated by 谷歌翻译
在国家观察中最强/最佳的对抗性扰动下评估增强学习(RL)代理的最坏情况性能(在某些限制内)对于理解RL代理商的鲁棒性至关重要。然而,在无论我们都能找到最佳攻击以及我们如何找到它,我们都可以找到最佳的对手是具有挑战性的。对普发拉利RL的现有工作要么使用基于启发式的方法,可以找不到最强大的对手,或者通过将代理人视为环境的一部分来说,直接培训基于RL的对手,这可以找到最佳的对手,但可能会变得棘手大状态空间。本文介绍了一种新的攻击方法,通过设计函数与名为“Director”的RL为基础的学习者的设计函数之间的合作找到最佳攻击。演员工艺在给定的政策扰动方向的状态扰动,主任学会提出最好的政策扰动方向。我们所提出的算法PA-AD,比具有大状态空间的环境中的基于RL的工作,理论上是最佳的,并且明显更有效。经验结果表明,我们建议的PA-AD普遍优惠各种Atari和Mujoco环境中最先进的攻击方法。通过将PA-AD应用于对抗性培训,我们在强烈的对手下实现了多个任务的最先进的经验稳健性。
translated by 谷歌翻译
部署到现实世界的自主智能代理必须与对感官输入的对抗性攻击保持强大的态度。在加强学习中的现有工作集中于最小值扰动攻击,这些攻击最初是为了模仿计算机视觉中感知不变性的概念。在本文中,我们注意到,这种最小值扰动攻击可以由受害者琐碎地检测到,因为这些导致观察序列与受害者的行为不符。此外,许多现实世界中的代理商(例如物理机器人)通常在人类主管下运行,这些代理商不容易受到这种扰动攻击的影响。结果,我们建议专注于幻觉攻击,这是一种与受害者的世界模式一致的新型攻击形式。我们为这个新颖的攻击框架提供了正式的定义,在各种条件下探索了其特征,并得出结论,代理必须寻求现实主义反馈以对幻觉攻击具有强大的态度。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
视觉导航中体现的代理以及深度神经网络引起了越来越多的关注。但是,深层神经网络容易受到恶意的对抗噪声的影响,这可能会导致视力导航的灾难性失败。在这些对抗性噪声中,通用的对抗扰动(UAP),即代理接收到的每个帧应用的图像无关扰动,对于体现视觉导航而言更为重要,因为它们是攻击过程中计算效率和应用程序实行的。但是,现有的UAP方法不考虑具体视觉导航的系统动力学。为了在连续决策设置中扩展UAP,我们将Universal Noise $ \ delta $下的不受欢迎的环境制定为$ \ delta $ distant的马尔可夫决策过程($ \ delta $ -MDP)。基于该公式,我们分析了$ \ delta $ -MDP的性质,并提出了两种新型的一致攻击方法,用于攻击体现剂,它们首先通过估计受干扰的Q函数和干扰分布来考虑MDP的动态。尽管有受害者模型,但我们一致的攻击可能会导致栖息地目标任务的绩效大大下降。广泛的实验结果表明,将具体视觉导航方法应用于现实世界中存在潜在的风险。
translated by 谷歌翻译
尽管深度强化学习(DRL)取得了巨大的成功,但由于过渡和观察的内在不确定性,它可能遇到灾难性的失败。大多数现有的安全加固学习方法只能处理过渡干扰或观察障碍,因为这两种干扰影响了代理的不同部分。此外,受欢迎的最坏情况可能会导致过度悲观的政策。为了解决这些问题,我们首先从理论上证明了在过渡干扰和观察障碍下的性能降解取决于一个新颖的价值函数范围(VFR),这与最佳状态和最坏状态之间的价值函数的间隙相对应。基于分析,我们采用有条件的价值风险(CVAR)作为对风险的评估,并提出了一种新颖的强化学习算法的CVAR-Proximal-Policy-oftimization(CPPO),该算法通过保持风险敏感的约束优化问题形式化。它的CVAR在给定的阈值下。实验结果表明,CPPO获得了更高的累积奖励,并且在Mujoco中一系列连续控制任务上的观察和过渡干扰更加强大。
translated by 谷歌翻译
沟通对于代理人共享信息并做出良好决定的许多多代理强化学习(MARL)问题很重要。但是,当在存在噪音和潜在攻击者的现实应用程序中部署训练有素的交流代理商时,基于沟通的政策的安全就会成为一个严重的问题,这些问题被忽视。具体而言,如果通过恶意攻击者操纵沟通信息,依靠不信任的交流的代理可能会采取不安全的行动,从而导致灾难性后果。因此,至关重要的是要确保代理人不会被腐败的沟通误导,同时仍然从良性的交流中受益。在这项工作中,我们考虑了一个具有$ n $代理的环境,攻击者可以任意将通信从任何$ c <\ frac {n-1} {2} $代理商转换为受害者代理。对于这种强大的威胁模型,我们通过构建一个消息集结策略来提出可认证的辩护,该策略汇总了多个随机消融的消息集。理论分析表明,这种消息安装策略可以利用良性通信,同时确保对对抗性交流,无论攻击算法如何。在多种环境中的实验证明,我们的防御能够显着改善受过训练的政策对各种攻击的鲁棒性。
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译
Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving.
translated by 谷歌翻译
离线增强学习(RL)提供了一个有希望的方向,可以利用大量离线数据来实现复杂的决策任务。由于分配转移问题,当前的离线RL算法通常被设计为在价值估计和行动选择方面是保守的。但是,这种保守主义在现实情况下遇到观察偏差时,例如传感器错误和对抗性攻击时会损害学习政策的鲁棒性。为了权衡鲁棒性和保守主义,我们通过一种新颖的保守平滑技术提出了强大的离线增强学习(RORL)。在RORL中,我们明确地介绍了数据集附近国家的策略和价值函数的正则化,以及对这些OOD状态的其他保守价值估计。从理论上讲,我们表明RORL比线性MDP中的最新理论结果更紧密地构成。我们证明RORL可以在一般离线RL基准上实现最新性能,并且对对抗性观察的扰动非常强大。
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
Deep Reinforcement Learning (RL) agents are susceptible to adversarial noise in their observations that can mislead their policies and decrease their performance. However, an adversary may be interested not only in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper presents a metric that measures the exact impact of adversarial attacks against such properties. We use this metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to concisely assess a system's robustness against attacks.
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译
虽然现实世界的增强学习应用程序(RL)越来越流行,但安全性和RL系统的鲁棒性需要更多的关注。最近的一项工作表明,在多代理RL环境中,可以将后门触发动作注入受害者(又称Trojan特工),这可能会在看到后门触发动作后立即导致灾难性故障。我们提出了RL后门检测的问题,旨在解决此安全漏洞。我们从广泛的经验研究中得出的一个有趣的观察是一种触发平滑性属性,与后门触发动作相似,正常动作也可以触发特洛伊木马的性能低。受到这一观察的启发,我们提出了一种加强学习解决方案Trojanseeker为特洛伊木马的代理找到近似触发作用,并进一步提出了一种有效的方法,以根据机器的学习来减轻特洛伊木马。实验表明,我们的方法可以正确区分和减轻各种类型的代理和环境中的所有特洛伊木马代理。
translated by 谷歌翻译
数字化和远程连接扩大了攻击面,使网络系统更脆弱。由于攻击者变得越来越复杂和资源丰富,仅仅依赖传统网络保护,如入侵检测,防火墙和加密,不足以保护网络系统。网络弹性提供了一种新的安全范式,可以使用弹性机制来补充保护不足。一种网络弹性机制(CRM)适应了已知的或零日威胁和实际威胁和不确定性,并对他们进行战略性地响应,以便在成功攻击时保持网络系统的关键功能。反馈架构在启用CRM的在线感应,推理和致动过程中发挥关键作用。强化学习(RL)是一个重要的工具,对网络弹性的反馈架构构成。它允许CRM提供有限或没有事先知识和攻击者的有限攻击的顺序响应。在这项工作中,我们审查了Cyber​​恢复力的RL的文献,并讨论了对三种主要类型的漏洞,即姿势有关,与信息相关的脆弱性的网络恢复力。我们介绍了三个CRM的应用领域:移动目标防御,防守网络欺骗和辅助人类安全技术。 RL算法也有漏洞。我们解释了RL的三个漏洞和目前的攻击模型,其中攻击者针对环境与代理商之间交换的信息:奖励,国家观察和行动命令。我们展示攻击者可以通过最低攻击努力来欺骗RL代理商学习邪恶的政策。最后,我们讨论了RL为基于RL的CRM的网络安全和恢复力和新兴应用的未来挑战。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译