后门攻击是对深度学习模型的强大攻击算法。最近,GNN对后门攻击的脆弱性已被证明,尤其是在图形分类任务上。在本文中,我们提出了GNN上的第一种后门检测和防御方法。大多数后门攻击都取决于向干净样品注入小但有影响力的扳机。对于图数据,当前的后门攻击专注于操纵图形结构以注入触发器。我们发现,良性样本和恶意样本之间存在明显的差异,例如忠诚度和不忠行为。在确定了恶意样本后,GNN模型的解释性可以帮助我们捕获最重要的子图,这可能是Trojan图中的触发器。我们使用各种数据集和不同的攻击设置来证明我们的防御方法的有效性。攻击成功率的所有事实都大大降低。
translated by 谷歌翻译
图形神经网络(GNNS)在许多图形挖掘任务中取得了巨大的成功,这些任务从消息传递策略中受益,该策略融合了局部结构和节点特征,从而为更好的图表表示学习。尽管GNN成功,并且与其他类型的深神经网络相似,但发现GNN容易受到图形结构和节点特征的不明显扰动。已经提出了许多对抗性攻击,以披露在不同的扰动策略下创建对抗性例子的GNN的脆弱性。但是,GNNS对成功后门攻击的脆弱性直到最近才显示。在本文中,我们披露了陷阱攻击,这是可转移的图形后门攻击。核心攻击原则是用基于扰动的触发器毒化训练数据集,这可以导致有效且可转移的后门攻击。图形的扰动触发是通过通过替代模型的基于梯度的得分矩阵在图形结构上执行扰动动作来生成的。与先前的作品相比,陷阱攻击在几种方面有所不同:i)利用替代图卷积网络(GCN)模型来生成基于黑盒的后门攻击的扰动触发器; ii)它产生了没有固定模式的样品特异性扰动触发器; iii)在使用锻造中毒训练数据集训练时,在GNN的背景下,攻击转移到了不同​​的GNN模型中。通过对四个现实世界数据集进行广泛的评估,我们证明了陷阱攻击使用四个现实世界数据集在四个不同流行的GNN中构建可转移的后门的有效性
translated by 谷歌翻译
在这项工作中,我们向图形神经网络(GNN)提出了第一个后门攻击。具体而言,我们向GNN提出一个\ emph {子画面的后门攻击},用于图表分类。在我们的后门攻击中,一旦预定义的子图注入测试图,GNN分类器就预测测试图的攻击者所选择的目标标签。我们在三个真实世界图数据集上的经验结果表明,我们的后门攻击对GNN的预测准确性的影响很小,对清洁测试图进行了很小影响。此外,我们概括了基于随机的平滑的认证防御来防御我们的后门攻击。我们的经验结果表明,在某些情况下,防御是有效的,但在其他情况下无效,突出了我们的后门攻击的新防御的需求。
translated by 谷歌翻译
链接预测,推断图形的未发现或潜在链接,被广泛应用于现实世界中。通过促进图表的标记链接作为训练数据,已经研究了许多基于深度学习的链接预测方法,与非深度方法相比,它们具有主导的预测准确性。但是,恶意制作的训练图的威胁将在深层模型中留下特定的后门,因此,当一些特定的示例被馈入模型时,它将做出错误的预测,定义为后门攻击。这是当前文献中忽略的重要方面。在本文中,我们促使后门攻击对链接预测的概念,并提出链接 - 背门以揭示现有链接预测方法的训练漏洞。具体而言,链接 - 贝克门将假节点与目标链接的节点结合在一起,形成触发器。此外,它通过目标模型的梯度信息来优化触发器。因此,在后排数据集中训练的链接预测模型将预测与目标状态触发的链接。在五个基准数据集和五个表现良好的链接预测模型上进行的广泛实验表明,链接 - 贝克门都在白色框(即目标模型参数可用)和黑色框下实现了最新的攻击成功率。框(即目标模型参数不可用)方案。此外,我们在防御性情况下作证了攻击,结果表明,链接 - 背部门仍然可以成功构建对表现良好的链接预测方法的成功攻击。代码和数据可在https://github.com/seaocn/link-backdoor上获得。
translated by 谷歌翻译
图神经网络(GNN)是一类用于处理图形域信息的基于深度学习的方法。 GNN最近已成为一种广泛使用的图形分析方法,因为它们可以为复杂的图形数据学习表示形式。但是,由于隐私问题和法规限制,集中的GNN可能很难应用于数据敏感的情况。 Federated学习(FL)是一种新兴技术,为保护隐私设置而开发,当几个方需要协作培训共享的全球模型时。尽管几项研究工作已应用于培训GNN(联邦GNN),但对他们对后门攻击的稳健性没有研究。本文通过在联邦GNN中进行两种类型的后门攻击来弥合这一差距:集中式后门攻击(CBA)和分发后门攻击(DBA)。我们的实验表明,在几乎所有评估的情况下,DBA攻击成功率高于CBA。对于CBA,即使对抗方的训练集嵌入了全球触发因素,所有本地触发器的攻击成功率也类似于全球触发因素。为了进一步探索联邦GNN中两次后门攻击的属性,我们评估了不同数量的客户,触发尺寸,中毒强度和触发密度的攻击性能。此外,我们探讨了DBA和CBA对两个最先进的防御能力的鲁棒性。我们发现,两次攻击都对被调查的防御能力进行了强大的强大,因此需要考虑将联邦GNN中的后门攻击视为需要定制防御的新威胁。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译
图形神经网络(GNNS)在各种现实世界应用中取得了有希望的性能。建立一个强大的GNN模型不是一个琐碎的任务,因为它需要大量的培训数据,强大的计算资源和微调模型的人类专业知识。更重要的是,随着对抗性攻击的发展,例如,模型窃取攻击,GNNS提出了模型认证的挑战。为避免对GNN的版权侵犯,有必要验证GNN模型的所有权。在本文中,我们为图形和节点分类任务提供了一种用于GNN的水印框架。我们1)设计两种策略来为图形分类生成水印数据,一个用于节点分类任务,2)通过培训将水印嵌入到主机模型中,以获得水印的GNN模型,3)验证可疑模型的所有权在黑盒设置中。实验表明,我们的框架可以验证GNN模型的所有权,具有非常高的概率(约100亿美元)的任务。此外,我们实验表明,即使在考虑到从不同架构获得的可疑模型比所有者的可疑模型,我们的水印方法也仍然有效。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
深度学习方法正在实现许多人工智能任务上的不断增长。深层模型的一个主要局限性是它们不适合可解释性。可以通过开发事后技术来解释预测,从而产生解释性领域,从而规避这种限制。最近,关于图像和文本的深层模型的解释性取得了重大进展。在图数据的领域,图形神经网络(GNN)及其解释性正在迅速发展。但是,既没有对GNN解释性方法的统一处理,也没有标准的基准和测试床。在这项调查中,我们提供了当前GNN解释性方法的统一和分类观点。我们对这一主题的统一和分类治疗对现有方法的共同性和差异阐明了灯光,并为进一步的方法论发展奠定了基础。为了促进评估,我们生成了一组专门用于GNN解释性的基准图数据集。我们总结了当前的数据集和指标,以评估GNN的解释性。总的来说,这项工作提供了GNN解释性和评估标准化测试床的统一方法论。
translated by 谷歌翻译
视觉变压器(VIT)最近在各种视觉任务上表现出了典范的性能,并被用作CNN的替代方案。它们的设计基于一种自我发挥的机制,该机制将图像作为一系列斑块进行处理,与CNN相比,这是完全不同的。因此,研究VIT是否容易受到后门攻击的影响很有趣。当攻击者出于恶意目的,攻击者毒害培训数据的一小部分时,就会发生后门攻击。模型性能在干净的测试图像上很好,但是攻击者可以通过在测试时间显示触发器来操纵模型的决策。据我们所知,我们是第一个证明VIT容易受到后门攻击的人。我们还发现VIT和CNNS之间存在着有趣的差异 - 解释算法有效地突出了VIT的测试图像的触发因素,但没有针对CNN。基于此观察结果,我们提出了一个测试时间图像阻止VIT的防御,这将攻击成功率降低了很大。代码可在此处找到:https://github.com/ucdvision/backdoor_transformer.git
translated by 谷歌翻译
A recent trojan attack on deep neural network (DNN) models is one insidious variant of data poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by leveraging the difficulty in interpretability of the learned model to misclassify any inputs signed with the attacker's chosen trojan trigger. Since the trojan trigger is a secret guarded and exploited by the attacker, detecting such trojan inputs is a challenge, especially at run-time when models are in active operation. This work builds STRong Intentional Perturbation (STRIP) based run-time trojan attack detection system and focuses on vision system. We intentionally perturb the incoming input, for instance by superimposing various image patterns, and observe the randomness of predicted classes for perturbed inputs from a given deployed model-malicious or benign. A low entropy in predicted classes violates the input-dependence property of a benign model and implies the presence of a malicious input-a characteristic of a trojaned input. The high efficacy of our method is validated through case studies on three popular and contrasting datasets: MNIST, CIFAR10 and GTSRB. We achieve an overall false acceptance rate (FAR) of less than 1%, given a preset false rejection rate (FRR) of 1%, for different types of triggers. Using CIFAR10 and GTSRB, we have empirically achieved result of 0% for both FRR and FAR. We have also evaluated STRIP robustness against a number of trojan attack variants and adaptive attacks.
translated by 谷歌翻译
文本后门攻击是对NLP系统的实际威胁。通过在训练阶段注入后门,对手可以通过预定义的触发器控制模型预测。由于已经提出了各种攻击和防御模型,因此进行严格的评估至关重要。但是,我们在以前的后门学习评估中重点介绍了两个问题:(1)忽略了现实世界情景(例如释放中毒的数据集或模型)之间的差异,我们认为每种情况都有其自身的限制和关注点,因此需要特定的评估。协议; (2)评估指标仅考虑攻击是否可以翻转模型对中毒样品的预测并保留对良性样品的表演,但是忽略了中毒样品也应该是隐秘和语义上的。为了解决这些问题,我们将现有作品分为三种实际情况,在这种情况下,攻击者分别释放数据集,预培训模型和微调模型,然后讨论其独特的评估方法。关于指标,为了完全评估中毒样本,我们使用语法误差增加和隐形性差异以及有效性的文本相似性。对框架进行正式化后,我们开发了一个开源工具包openbackdoor,以促进文本后门学习的实现和评估。使用此工具包,我们在建议的范式下进行基准攻击和防御模型进行广泛的实验。为了促进针对中毒数据集的不充分的防御能力,我们进一步提出了Cube,这是一个简单而强大的基于聚类的防御基线。我们希望我们的框架和基准可以作为未来模型开发和评估的基石。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译
深度神经网络众所周知,很容易受到对抗性攻击和后门攻击的影响,在该攻击中,对输入的微小修改能够误导模型以给出错误的结果。尽管已经广泛研究了针对对抗性攻击的防御措施,但有关减轻后门攻击的调查仍处于早期阶段。尚不清楚防御这两次攻击之间是否存在任何连接和共同特征。我们对对抗性示例与深神网络的后门示例之间的联系进行了全面的研究,以寻求回答以下问题:我们可以使用对抗检测方法检测后门。我们的见解是基于这样的观察结果,即在推理过程中,对抗性示例和后门示例都有异常,与良性​​样本高度区分。结果,我们修改了四种现有的对抗防御方法来检测后门示例。广泛的评估表明,这些方法可靠地防止后门攻击,其准确性比检测对抗性实例更高。这些解决方案还揭示了模型灵敏度,激活空间和特征空间中对抗性示例,后门示例和正常样本的关系。这能够增强我们对这两次攻击和防御机会的固有特征的理解。
translated by 谷歌翻译
现代自动驾驶汽车采用最先进的DNN模型来解释传感器数据并感知环境。但是,DNN模型容易受到不同类型的对抗攻击的影响,这对车辆和乘客的安全性和安全性构成了重大风险。一个突出的威胁是后门攻击,对手可以通过中毒训练样本来妥协DNN模型。尽管已经大量精力致力于调查后门攻击对传统的计算机视觉任务,但很少探索其对自主驾驶场景的实用性和适用性,尤其是在物理世界中。在本文中,我们针对车道检测系统,该系统是许多自动驾驶任务,例如导航,车道切换的必不可少的模块。我们设计并实现了对此类系统的第一次物理后门攻击。我们的攻击是针对不同类型的车道检测算法的全面有效的。具体而言,我们引入了两种攻击方法(毒药和清洁量)来生成中毒样本。使用这些样品,训练有素的车道检测模型将被后门感染,并且可以通过公共物体(例如,交通锥)进行启动,以进行错误的检测,导致车辆从道路上或在相反的车道上行驶。对公共数据集和物理自动驾驶汽车的广泛评估表明,我们的后门攻击对各种防御解决方案都是有效,隐秘和强大的。我们的代码和实验视频可以在https://sites.google.com/view/lane-detection-attack/lda中找到。
translated by 谷歌翻译
已知深层神经网络(DNN)容易受到后门攻击和对抗攻击的影响。在文献中,这两种攻击通常被视为明显的问题并分别解决,因为它们分别属于训练时间和推理时间攻击。但是,在本文中,我们发现它们之间有一个有趣的联系:对于具有后门种植的模型,我们观察到其对抗性示例具有与触发样品相似的行为,即都激活了同一DNN神经元的子集。这表明将后门种植到模型中会严重影响模型的对抗性例子。基于这一观察结果,我们设计了一种新的对抗性微调(AFT)算法,以防止后门攻击。我们从经验上表明,在5次最先进的后门攻击中,我们的船尾可以有效地擦除后门触发器,而无需在干净的样品上明显的性能降解,并显着优于现有的防御方法。
translated by 谷歌翻译
在现实世界应用中的深度神经网络(DNN)的成功受益于丰富的预训练模型。然而,回溯预训练模型可以对下游DNN的部署构成显着的特洛伊木马威胁。现有的DNN测试方法主要旨在在对抗性设置中找到错误的角壳行为,但未能发现由强大的木马攻击所制作的后门。观察特洛伊木马网络行为表明,它们不仅由先前的工作所提出的单一受损神经元反射,而且归因于在多个神经元的激活强度和频率中的关键神经路径。这项工作制定了DNN后门测试,并提出了录音机框架。通过少量良性示例的关键神经元的差异模糊,我们识别特洛伊木马路径,特别是临界人,并通过模拟所识别的路径中的关键神经元来产生后门测试示例。广泛的实验表明了追索者的优越性,比现有方法更高的检测性能。通过隐秘的混合和自适应攻击来检测到后门的录音机更好,现有方法无法检测到。此外,我们的实验表明,录音所可能会揭示模型动物园中的模型的潜在潜在的背面。
translated by 谷歌翻译
Vertical federated learning (VFL) is an emerging paradigm that enables collaborators to build machine learning models together in a distributed fashion. In general, these parties have a group of users in common but own different features. Existing VFL frameworks use cryptographic techniques to provide data privacy and security guarantees, leading to a line of works studying computing efficiency and fast implementation. However, the security of VFL's model remains underexplored.
translated by 谷歌翻译
隐私性和解释性是实现值得信赖的机器学习的两种重要成分。我们通过图形重建攻击研究了图机学习中这两个方面的相互作用。这里的对手的目的是重建给定模型解释的训练数据的图形结构。根据对手可用的不同种类的辅助信息,我们提出了几种图形重建攻击。我们表明,事后功能解释的其他知识大大提高了这些攻击的成功率。此外,我们详细研究了攻击性能相对于三种不同类别的图形神经网络的解释方法的差异:基于梯度,基于扰动和基于替代模型的方法。虽然基于梯度的解释在图形结构方面显示最多,但我们发现这些解释并不总是在实用程序上得分很高。对于其他两类的解释,隐私泄漏随着解释实用程序的增加而增加。最后,我们提出了基于随机响应机制的防御,以释放大大降低攻击成功率的解释。我们的匿名代码可用。
translated by 谷歌翻译