智能杂草系统为了执行植物特定的运营,可以有助于农业和环境的可持续性。尽管近年来对精密杂草管理的自主机器人技术造成巨大进展,但尚未实现在领域的底盖内的工作。这种系统的先决条件是可靠的检测和杂草的分类,以避免错误地喷涂,从而损坏周围的植物。实时多级杂草鉴定使特异性的杂草治疗能够显着降低除草剂的使用量。在这里,我们的第一个贡献是第一个充分的大型现实图像数据集\ texit {aiweeds}(一个图像中的一个/多种杂草),一个约10,000个亚麻的注释图像,以及在田间和花园中最常见的14个杂草从北达科他州,加利福尼亚州和中国中部的20个不同的地方取自20个不同的地方。其次,我们提供了一个完整的管道,从模型培训,最大效率将规则解优化模型部署到单板计算机上。基于\ Texit {Aiweeds}和管道,我们使用五个基准CNN模型提出了一种分类性能的基线。其中,MobileNetv2具有最短的推理时间和最低记忆消耗,是实时应用程序的合格候选者。最后,我们将MobileNetv2部署到我们自己的紧凑型自主机器人\ Textit {Sambot}以进行实时杂草检测。在亚麻领域的先前看不见的场景中实现了90 \%测试精度(具有0.2-0.3米的行间距,杂草和杂草,失真,模糊和阴影,是真实世界中精确杂草控制的里程碑。我们公开发布了DataSet和代码以生成\ URL {https://github.com/structurescomp/multi-class-weed-classification}。
translated by 谷歌翻译
在农业环境中的现代除草剂应用通常依赖于将除草剂分配给作物和杂草相似的或便携式喷雾器的大型喷雾器,这些喷雾器需要劳动密集型手动操作。前一种方法导致过度使用除草剂并减少作物产量,而后者在大规模操作中经常站立。本文介绍了能够基于计算机视觉的导航,杂草检测,完整的现场覆盖以及\ $ 400下的计算机视觉的行作物的杂草管理的第一个完全自主机器人。目标应用程序是在裁剪领域中的自主行行杂草控制,例如,亚麻和油菜,在农作物之间的间距像一只脚一样小。所提出的机器人足够小,可以在植物生长的所有阶段之间通过植物生长的阶段,同时检测杂草和喷洒除草剂。充电系统包括新设计的机器人硬件,斜坡,机器人充电臂和移动充电站。采用集成视觉算法,有效地帮助充电器对齐。结合,它们使机器人能够在现场中连续工作而不获得电力。此外,将与预处理技术相结合的基于颜色的轮廓算法用于依赖于从车载单手套摄像机的输入上的鲁棒导航。将这种紧凑的机器人纳入农场可以帮助自动化杂草控制,即使在增长的后期阶段,并通过精确定位杂草减少除草剂。机器人平台在北达科他州的亚麻籽领域进行了现场测试。
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
本文对地面农业机器人系统和应用进行了全面综述,并特别关注收获,涵盖研究,商业产品和结果及其能力技术。大多数文献涉及作物检测的发展,通过视觉及其相关挑战的现场导航。健康监测,产量估计,水状态检查,种子种植和清除杂草经常遇到任务。关于机器人收割,苹果,草莓,西红柿和甜辣椒,主要是出版物,研究项目和商业产品中考虑的农作物。据报道的收获农业解决方案,通常由移动平台,单个机器人手臂/操纵器和各种导航/视觉系统组成。本文回顾了报告的特定功能和硬件的发展,通常是运营农业机器人收割机所要求的;它们包括(a)视觉系统,(b)运动计划/导航方法(对于机器人平台和/或ARM),(c)具有3D可视化的人类机器人交流(HRI)策略,(d)系统操作计划&掌握策略和(e)机器人最终效果/抓手设计。显然,自动化农业,特别是通过机器人系统的自主收获是一个研究领域,它仍然敞开着,在可以做出新的贡献的地方提供了一些挑战。
translated by 谷歌翻译
由于它可能对粮食安全,可持续性,资源利用效率,化学处理的降低以及人类努力和产量的优化,因此,自主机器人在农业中的应用正在越来越受欢迎。有了这一愿景,蓬勃发展的研究项目旨在开发一种适应性的机器人解决方案,用于精确耕作,该解决方案结合了小型自动无人驾驶飞机(UAV)(UAV)的空中调查能力以及由多功能无人驾驶的无人接地车(UGV)执行的针对性干预措施。本文概述了该项目中获得的科学和技术进步和结果。我们引入了多光谱感知算法以及空中和地面系统,用于监测农作物密度,杂草压力,作物氮营养状况,并准确地对杂草进行分类和定位。然后,我们介绍了针对我们在农业环境中机器人身份量身定制的导航和映射系统,以及用于协作映射的模块。我们最终介绍了我们在不同的现场条件和不同农作物中实施和测试的地面干预硬件,软件解决方案以及接口。我们描述了一个真正的用例,在该案例中,无人机与UGV合作以监视该领域并进行选择性喷涂而无需人工干预。
translated by 谷歌翻译
农业环境中的自主导航通常受到可能在耕地中可能出现的不同田间条件的挑战。在这些农业环境中自动导航的最新解决方案将需要昂贵的硬件,例如RTK-GPS。本文提出了一种强大的作物排检测算法,该算法可以承受这些变化,同时检测作物行进行视觉伺服。创建了一个糖图像的数据集,其中有43个组合在可耕地中发现的11个田间变化。新型的作物行检测算法既经过作物行检测性能,又要测试沿农作系的视觉伺服伺服的能力。该算法仅使用RGB图像作为输入,并且使用卷积神经网络来预测作物行面罩。我们的算法优于基线方法,该方法使用基于颜色的分割来实现场变化的所有组合。我们使用一个组合性能指标,该指标解释了作物行检测的角度和位移误差。我们的算法在作物的早期生长阶段表现出最差的表现。
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译
Fruit is a key crop in worldwide agriculture feeding millions of people. The standard supply chain of fruit products involves quality checks to guarantee freshness, taste, and, most of all, safety. An important factor that determines fruit quality is its stage of ripening. This is usually manually classified by experts in the field, which makes it a labor-intensive and error-prone process. Thus, there is an arising need for automation in the process of fruit ripeness classification. Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded. Machine learning and deep learning techniques dominate the top-performing methods. Furthermore, deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features, which are often crop-specific. In this survey, we review the latest methods proposed in the literature to automatize fruit ripeness classification, highlighting the most common feature descriptors they operate on.
translated by 谷歌翻译
休眠季节葡萄树修剪需要熟练的季节性工人,这在冬季变得越来越缺乏。随着在短期季节性招聘文化和低工资的短期季节性招聘文化和低工资的时间内,随着工人更少的葡萄藤,葡萄藤往往被修剪不一致地导致葡萄化物不平衡。除此之外,目前现有的机械方法无法选择性地修剪葡萄园和手动后续操作,通常需要进一步提高生产成本。在本文中,我们展示了崎岖,全自治机器人的设计和田间评估,用于休眠季节葡萄园的端到最终修剪。该设计的设计包括新颖的相机系统,运动冗余机械手,地面机器人和在感知系统中的新颖算法。所提出的研究原型机器人系统能够在213秒/葡萄藤中完全从两侧刺激一排藤蔓,总修枝精度为87%。与机械预灌浆试验相比,商业葡萄园中自治系统的初始现场测试显示出休眠季节修剪的显着变化。在手稿中描述了设计方法,系统组件,经验教训,未来增强以及简要的经济分析。
translated by 谷歌翻译
作物疾病是对粮食安全的主要威胁,其快速识别对于防止产量损失很重要。由于缺乏必要的基础设施,因此很难迅速识别这些疾病。计算机视觉的最新进展和智能手机渗透的渗透为智能手机辅助疾病识别铺平了道路。大多数植物疾病在植物的叶面结构上留下了特定的文物。这项研究于2020年在巴基斯坦拉合尔工程技术大学计算机科学与工程系进行,以检查基于叶片的植物疾病识别。这项研究为叶面疾病鉴定提供了基于神经网络的深度解决方案,并纳入了图像质量评估,以选择执行识别所需质量的图像,并将其命名为农业病理学家(AGRO PATH)。新手摄影师的捕获图像可能包含噪音,缺乏结构和模糊,从而导致诊断失败或不准确。此外,Agropath模型具有99.42%的叶面疾病鉴定精度。拟议的添加对于在农业领域的叶面疾病鉴定的应用特别有用。
translated by 谷歌翻译
茶叶菊花检测在开花阶段是选择性菊花收获机器人发展的关键部件之一。然而,在非结构化领域环境下检测开花的菊花是一种挑战,鉴于照明,闭塞和对象量表的变化。在这方面,我们提出了一种基于Yolo的茶叶菊花检测(TC-YOLO)的高度融合和轻量级的深度学习架构。首先,在骨干组件和颈部部件中,该方法使用跨级部分密度的网络(CSPDenSenet)作为主网络,并嵌入自定义特征融合模块以引导梯度流。在最终的头部部件中,该方法将递归特征金字塔(RFP)多尺度融合回流结构和腔间空间金字塔(ASPP)模块结合在一起,具有腔卷积以实现检测任务。得到的模型在300个现场图像上进行了测试,显示在NVIDIA TESLA P100 GPU环境下,如果推断速度为每个图像的47.23 FPS(416 * 416),则TC-Yolo可以实现92.49%的平均精度(AP)在我们自己的茶叶菊花。此外,该方法(13.6M)可以部署在单个移动GPU上,并且可以进一步开发为未来选择性菊花收获机器人的感知系统。
translated by 谷歌翻译
通过智能连接设备,技术正在逐步重塑国内环境,提高家庭安全和整体环境质量。然而,人口转移和流行病最近展示导致他们房屋中的老年人隔离,产生了可靠的辅助人物的需求。机器人助理是国内福利创新的新前沿。老年人监测只是一个可能的服务应用之一,智能机器人平台可以处理集体福祉。在本文中,我们展示了一个新的辅助机器人,我们通过模块化的基于层的架构开发,使灵活的机械设计与最先进的人工智能进行了灵活的人工智能,以便感知和声音控制。关于以前的机器人助手的作品,我们提出了一个设置有四个麦粉轮的全向平台,这使得自主导航与杂乱环境中的有效障碍物避免。此外,我们设计可控定位装置,以扩展传感器的视觉范围,并改善对用户界面的访问以进行远程呈现和连接。轻量级深度学习解决方案,用于视觉感知,人员姿势分类和声乐命令完全运行机器人的嵌入式硬件,避免了云服务私有数据收集产生的隐私问题。
translated by 谷歌翻译
在非结构化环境中工作的机器人必须能够感知和解释其周围环境。机器人技术领域基于深度学习模型的主要障碍之一是缺乏针对不同工业应用的特定领域标记数据。在本文中,我们提出了一种基于域随机化的SIM2REAL传输学习方法,用于对象检测,可以自动生成任意大小和对象类型的标记的合成数据集。随后,对最先进的卷积神经网络Yolov4进行了训练,以检测不同类型的工业对象。通过提出的域随机化方法,我们可以在零射击和单次转移的情况下分别缩小现实差距,分别达到86.32%和97.38%的MAP50分数,其中包含190个真实图像。在GEFORCE RTX 2080 TI GPU上,数据生成过程的每图像少于0.5 s,培训持续约12H,这使其方便地用于工业使用。我们的解决方案符合工业需求,因为它可以通过仅使用1个真实图像进行培训来可靠地区分相似的对象类别。据我们所知,这是迄今为止满足这些约束的唯一工作。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
街道级别图像对原位数据收集进行扩大占据了重要潜力。通过组合使用便宜的高质量相机与最近的深度学习计算解决方案的进步来实现这一点,以推导出相关专题信息。我们介绍了一个框架,用于使用计算机视觉从街道层图像中收集和提取作物类型和候选信息。在2018年生长季节期间,高清图片被捕获在荷兰弗莱洛兰省的侧视动作相机。每个月从3月到10月,调查了一个固定的200公里路线,每秒收集一张照片,结果总计40万个地理标记的图片。在220个特定的包裹物位置,记录了现场作物的观察结果,以获得17种作物。此外,时间跨度包括特定的出苗前包裹阶段,例如用于春季和夏季作物的不同栽培的裸土,以及收获后栽培实践,例如,绿色皱眉和捕捉庄稼。基于与卷积神经网络(MobileNet)的转移学习,使用具有众所周知的图像识别模型的Tensorflow进行分类。开发了一种超核解方法,以获得160型号的表现最佳模型。这种最佳模型应用于独立推理的鉴别作物类型,宏观F1分数为88.1%的宏观效果,在包裹水平的86.9%。讨论了这种方法的潜力和警告以及实施和改进的实际考虑因素。所提出的框架速度升高了高质量的原位数据收集,并通过使用计算机视觉自动分类建议大规模数据收集的途径。
translated by 谷歌翻译
截至2017年,鱼类产品约占全球人类饮食的16%。计数作用是生产和生产这些产品的重要组成部分。种植者必须准确计算鱼类,以便这样做技术解决方案。开发了两个计算机视觉系统,以自动计算在工业池塘中生长的甲壳类幼虫。第一个系统包括带有3024x4032分辨率的iPhone 11摄像头,该摄像头在室内条件下从工业池塘中获取图像。使用该系统进行了两次实验,第一部实验包括在一天的增长阶段,在9,10的一天中使用iPhone 11相机在特定照明条件下获得的200张图像。在第二个实验中,用两个设备iPhone 11和索尼DSCHX90V摄像机拍摄了一个幼虫工业池。使用第一个设备(iPhone 11)测试了两个照明条件。在每种情况下,都获得了110张图像。该系统的准确性为88.4%的图像检测。第二个系统包括DSLR Nikon D510相机,具有2000x2000分辨率,在工业池塘外进行了七次实验。在幼虫生长阶段的第1天获取图像,从而获得了总共700张图像。该系统的密度为50的精度为86%。一种基于Yolov5 CNN模型开发的算法,该算法自动计算两种情况的幼虫数量。此外,在这项研究中,开发了幼虫生长函数。每天,从工业池塘手动取几个幼虫,并在显微镜下进行分析。确定生长阶段后,就获得了幼虫的图像。每个幼虫的长度都是通过图像手动测量的。最合适的模型是Gompertz模型,其拟合指数的良好性r平方为0.983。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译