模拟湍流的模拟,尤其是在大气中云的边缘,是一项固有的挑战。迄今为止,执行此类实验的最佳计算方法是直接数值模拟(DNS)。 DNS涉及在三维空间中的离散网格盒上解决流体流的非线性部分微分方程,也称为Navier-Stokes方程。这是一个有价值的范式,它指导了数值天气预测模型来计算降雨形成。但是,对于天气预报社区的实用实用程序,不能为DNS执行DNS。在这里,我们介绍了DeepClouds.ai,这是一个3D-UNET,该Unet模拟了上升的云DNS实验的输出。通过将内部3D立方体映射到完整的3D立方体,从DNS离散化的网格模拟的输出中映射到完整的3D立方体来解决DNS中域大小的问题。我们的方法有效地捕获了湍流动力学,而无需解决复杂的动力核心。基线表明,基于深度学习的仿真与通过各种得分指标衡量的基于部分差异方程的模型相媲美。该框架可用于通过在大气中的大物理领域进行模拟来进一步进一步发展湍流和云流的科学。通过高级参数化方案改善天气预测,这将导致社会福利。
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
后处理整体预测系统可以改善天气预报,尤其是对于极端事件预测。近年来,已经开发出不同的机器学习模型来提高后处理步骤的质量。但是,这些模型在很大程度上依赖数据并生成此类合奏成员需要以高计算成本的数值天气预测模型进行多次运行。本文介绍了ENS-10数据集,由十个合奏成员组成,分布在20年中(1998-2017)。合奏成员是通过扰动数值天气模拟来捕获地球的混乱行为而产生的。为了代表大气的三维状态,ENS-10在11个不同的压力水平以及0.5度分辨率的表面中提供了最相关的大气变量。该数据集以48小时的交货时间针对预测校正任务,这实质上是通过消除合奏成员的偏见来改善预测质量。为此,ENS-10为预测交货时间t = 0、24和48小时(每周两个数据点)提供了天气变量。我们在ENS-10上为此任务提供了一组基线,并比较了它们在纠正不同天气变量预测时的性能。我们还评估了使用数据集预测极端事件的基准。 ENS-10数据集可在创意共享归因4.0国际(CC By 4.0)许可下获得。
translated by 谷歌翻译
有希望的方法来改善气候模型中的云参数化,因此气候预测是使用深度学习与来自Storm-解析模型(SRM)模拟的培训数据结合使用。 ICOSAHEDRAL非静水压(图标)建模框架允许模拟从数值天气预报到气候投影,使其成为开发基于神经网络(NN)的子网比例过程的参数化的理想目标。在图标框架内,我们通过基于逼真的区域和全局图标SRM模拟培训基于NN的云覆盖参数化。我们设置了三种不同类型的NNS,其垂直局部程度不同,它们假设从粗粒粒度大气状态变量诊断云盖。 NNS精确地从粗粒数据中估计子网格尺度云覆盖,该数据具有与其训练数据相似的地理特征。此外,全球培训的NNS可以再现区域SRM仿真的子网格级云覆盖。使用基于游戏理论的可解释性库福芙添加剂解释,我们识别特定湿度和云冰上的过分传播,以及我们基于列的NN不能从全局到区域粗粒度SRM数据完全概括的原因。该解释工具还有助于可视化区域和全球训练的基于列的NNS之间的特征重要性的相似性和差异,并在其云覆盖预测和热力学环境之间揭示了本地关系。我们的结果表明,深度学习的潜力从全球SRMS获得准确但可解释的云覆盖参数化,并表明基于邻域的模型可能是精度和概括性之间的良好折衷。
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
泊松方程至关重要,以获得用于霍尔效应推进器和炉射线放电的等离子体流体模拟中的自我一致的解决方案,因为泊松解决方案看起来是不稳定的非线性流动方程的源期。作为第一步,使用多尺度架构研究了使用深神经网络的零小小的边界条件的求解2D泊松方程,以分支机构,深度和接收领域的数量定义。一个关键目标是更好地了解神经网络如何学习泊松解决方案,并提供指导方针来实现最佳网络配置,特别是当耦合到具有等离子体源术语的时变欧拉方程时。这里,发现接收领域对于正确捕获场的大拓扑结构至关重要。对多种架构,损失和封锁的调查提供了最佳的网络来准确解决稳定的泊松问题。然后在具有越来越多的节点的网格上监测称为Plasmanet的最佳神经网络求解器的性能,并与经典平行的线性溶剂进行比较。接下来,在电子等离子体振荡测试盒的上下文中,Plasmanet与不稳定的欧拉等离子体流体方程求解器联接。在这一时间不断发展的问题中,需要物理损失来产生稳定的模拟。最终测试了涉及化学和平流的更复杂的放电繁殖案例。应用了先前部分中建立的指导方针,以构建CNN,以解决具有不同边界条件的圆柱形坐标中的相同泊松方程。结果揭示了良好的CNN预测,并利用现代GPU的硬件铺平了新的计算策略,以预测涉及泊松方程的不稳定问题。
translated by 谷歌翻译
气候变化所扩大的极端天气正在造成全球日益毁灭性的影响。由于高计算成本和严格的时间到解决方案限制,目前基于物理的数值天气预测(NWP)的使用限制了精度。我们报告说,数据驱动的深度学习地球系统模拟器Fourcastnet可以预测全球天气,并在接近最先进的准确性的同时,比NWP更快地产生五个量子的预测。四个超级计算系统(Selene,Perlmutter和Juwels Booster高达3,808 nvidia a100 GPU)在三个超级计算系统上进行了优化,并有效地缩放,并在混合精度中获得140.8 PETAFLOPS(该规模的峰值为11.9%)。在3,072GPU上在Juwels Booster上测量的训练四界的时间到达的时间为67.4分钟,相对于最新的NWP,在推理中,相对于最先进的NWP的时间更快。 Fourcastnet提前一周可产生准确的瞬时天气预测,使巨大的合奏更好地捕捉了极端天气,并支持更高的全球预测决议。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
湍流无处不在,获得有效,准确且可概括的订单模型仍然是一个具有挑战性的问题。该手稿开发了减少拉格朗日模型的湍流模型的层次结构,以研究和比较在拉格朗日框架内实施平滑的粒子流体动力学(SPH)结构与嵌入神经网络(NN)作为通用函数近似器中的效果。 SPH是用于近似流体力学方程的无网格拉格朗日方法。从基于神经网络(NN)的拉格朗日加速运算符的参数化开始,该层次结构逐渐结合了一个弱化和参数化的SPH框架,该框架可以执行物理对称性和保护定律。开发了两个新的参数化平滑核,其中包含在完全参数化的SPH模拟器中,并与立方和四分之一的平滑核进行了比较。对于每个模型,我们使用基于梯度的优化最小化的不同损耗函数,其中使用自动分化(AD)和灵敏度分析(SA)获得了有效的梯度计算。每个模型均经过两个地面真理(GT)数据集训练,该数据集与每周可压缩的均质各向同性湍流(hit),(1)使用弱压缩SPH的验证集,(2)来自直接数值模拟(DNS)的高忠诚度集。数值证据表明:(a)对“合成” SPH数据的方法验证; (b)嵌入在SPH框架中近似状态方程的NN的能力; (b)每个模型都能插入DNS数据; (c)编码更多的SPH结构可提高对不同湍流的马赫数和时间尺度的普遍性; (d)引入两个新型参数化平滑核可提高SPH比标准平滑核的准确性。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
在数值天气和气候模型中的云结构的处理通常很大程度上是大大简化的,以使它们计算得起价格实惠。在这里,我们建议使用计算廉价的神经网络来纠正欧洲的中等天气预报1D辐射方案ECRAD,用于3D云效应。 3D云效应被学习为ECRAD快速1D Tripleclouds疏忽它们的差异及其3D Spartacus(通过云侧辐射传输的快速算法),其中包括它们的求解器,但大约是计算昂贵的五倍。在3D信号的20到30%之间的典型误差,神经网络的准确性提高了运行时增加约1%。因此,而不是模仿整个斯巴达斯,我们将Tripleclouds保持不变的气氛的无云部分和在其他地方的3D矫正它。如果我们假设两者的相似的信噪比,则对相对小的3D校正而不是整个信号的焦点允许显着提高预测。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
血流特征的预测对于了解血液动脉网络的行为至关重要,特别是在血管疾病(如狭窄)的存在下。计算流体动力学(CFD)提供了一种强大而有效的工具,可以确定包括网络内的压力和速度字段的这些特征。尽管该领域有许多研究,但CFD的极高计算成本导致研究人员开发新的平台,包括机器学习方法,而是以更低的成本提供更快的分析。在这项研究中,我们提出了一个深度神经网络框架,以预测冠状动脉网络中的流动行为,在存在像狭窄等异常存在下具有不同的性质。为此,使用合成数据训练人工神经网络(ANN)模型,使得它可以预测动脉网络内的压力和速度。培训神经网络所需的数据是从ABAQUS软件的特定特征的次数的CFD分析中获得了培训神经网络的数据。狭窄引起的血压下降,这是诊断心脏病诊断中最重要的因素之一,可以使用我们所提出的模型来了解冠状动脉的任何部分的几何和流动边界条件。使用Lad血管的三个实际几何形状来验证模型的效率。所提出的方法精确地预测了血流量的血流动力学行为。压力预测的平均精度为98.7%,平均速度幅度精度为93.2%。根据测试三个患者特定几何形状的模型的结果,模型可以被认为是有限元方法的替代方案以及其他难以实现的耗时数值模拟。
translated by 谷歌翻译
背景:洪水是世界上最常见的自然灾害,影响数亿岁的生活。因此,洪水预测是一项重要的重要努力,通常使用物理水流模拟实现,依赖于准确的地形升降映射。然而,这种基于求解部分微分方程的这种模拟是在大规模上计算上的禁止。这种可扩展性问题通常使用高程地图的粗网格表示,尽管这种表示可能扭曲了至关重要的地形细节,导致模拟中的显着不准确。贡献:我们训练一个深度神经网络,以执行地形地图的物理信息信息:我们优化地形地图的粗网格表示,以便洪水预测将匹配细网解决方案。对于成功的学习过程,我们专门为此任务配置数据集。我们证明,通过这种方法,可以实现计算成本的显着降低,同时保持准确的解决方案。参考实施伴随着该文件以及数据集再现的文档和代码。
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译
我们提出并展示了一种基于物理引导的机器学习的城市排水系统液压系统快速准确的替代建模的新方法。替代物是根据流体动力(HIFI)模型的一组有限的仿真结果训练的。与HIFI模型相比,我们的方法将模拟时间减少了一到两个数量级。因此,它比例如概念性水文模型,但它可以模拟排水网络的所有节点和链接中的水位,流和附加费,因此很大程度上保留了HIFI模型提供的细节水平。比较由替代物和HIFI模型模拟的时间序列,达到了0.9顺序的R2值。替代培训时间目前为一小时。但是,可以通过应用转移学习和图形神经网络来减少它们。我们的替代方法对于城市排水系统的初始设计阶段以及实时应用的互动讲习班将很有用。此外,我们的模型公式是通用的,未来的研究应调查其在模拟其他供水系统中的应用。
translated by 谷歌翻译
数据驱动算法,特别是神经网络,可以在高分辨率模拟数据训练时模拟粗辨率气候模型中未解决的过程的影响;然而,当在没有接受培训的条件下评估时,它们通常会进行大规模的概括误差。在这里,我们建议在物理上重新归类机器学习算法的输入和输出,以帮助他们推广到看不见的气候。在三个不同的气候模型中应用了划分级热力学的离线参数化,我们展示了重新划分的或“气候不变”神经网络,使测试气候的准确预测比其培训气候更温暖。此外,“气候不变”神经网络促进了Aquaplanet和地球模拟之间的泛化。通过可视化和归因方法,我们表明与标准机器学习模型相比,“气候不变”算法学到了风暴规模对流,辐射和其天气热力学环境之间的更多地方和强大的关系。总的来说,这些结果表明,将物理知识纳入地球系统过程的数据驱动模型可以提高其在气候制度上概括的一致性和能力。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译