我们提出并展示了一种基于物理引导的机器学习的城市排水系统液压系统快速准确的替代建模的新方法。替代物是根据流体动力(HIFI)模型的一组有限的仿真结果训练的。与HIFI模型相比,我们的方法将模拟时间减少了一到两个数量级。因此,它比例如概念性水文模型,但它可以模拟排水网络的所有节点和链接中的水位,流和附加费,因此很大程度上保留了HIFI模型提供的细节水平。比较由替代物和HIFI模型模拟的时间序列,达到了0.9顺序的R2值。替代培训时间目前为一小时。但是,可以通过应用转移学习和图形神经网络来减少它们。我们的替代方法对于城市排水系统的初始设计阶段以及实时应用的互动讲习班将很有用。此外,我们的模型公式是通用的,未来的研究应调查其在模拟其他供水系统中的应用。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
我们研究机器学习(ML)和深度学习(DL)算法的能力,基于地下温度观察推断表面/地面交换通量。观察和助势是由代表哥伦比亚河附近的高分辨率数值模型,位于华盛顿州东南部的能源部汉福德遗址附近。随机测量误差,不同幅度的加入合成温度观察。结果表明,两个ML和DL方法可用于推断表面/地面交换通量。 DL方法,尤其是卷积神经网络,当用于用施加的平滑滤波器解释噪声温度数据时越高。然而,ML方法也表现良好,它们可以更好地识别减少数量的重要观察,这对于测量网络优化也是有用的。令人惊讶的是,M1和DL方法比向下通量更好地推断出向上的助焊剂。这与使用数值模型从温度观测推断出来的先前发现与先前的发现与先前的发现相反,并且可能表明将ML或DL推断的组合使用与数值推断相结合可以改善河流系统下方的助焊剂估计。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
我们展示了一个端到端框架,以提高人造系统对不可预见的事件的弹性。该框架基于基于物理的数字双胞胎模型和三个负责实时故障诊断,预后和重新配置的模块。故障诊断模块使用基于模型的诊断算法来检测和分离断层,并在系统中产生干预措施,以消除不确定的诊断解决方案。我们通过使用基于物理学的数字双胞胎的平行化和替代模型来扩展故障诊断算法为所需的实时性能。预后模块跟踪故障进度,并训练在线退化模型,以计算系统组件的剩余使用寿命。此外,我们使用降解模型来评估断层进程对操作要求的影响。重新配置模块使用基于PDDL的计划,并带有语义附件来调整系统控件,从而最大程度地减少了对系统操作的故障影响。我们定义一个弹性度量,并以燃料系统模型的示例来说明该指标如何通过我们的框架改进。
translated by 谷歌翻译
背景:洪水是世界上最常见的自然灾害,影响数亿岁的生活。因此,洪水预测是一项重要的重要努力,通常使用物理水流模拟实现,依赖于准确的地形升降映射。然而,这种基于求解部分微分方程的这种模拟是在大规模上计算上的禁止。这种可扩展性问题通常使用高程地图的粗网格表示,尽管这种表示可能扭曲了至关重要的地形细节,导致模拟中的显着不准确。贡献:我们训练一个深度神经网络,以执行地形地图的物理信息信息:我们优化地形地图的粗网格表示,以便洪水预测将匹配细网解决方案。对于成功的学习过程,我们专门为此任务配置数据集。我们证明,通过这种方法,可以实现计算成本的显着降低,同时保持准确的解决方案。参考实施伴随着该文件以及数据集再现的文档和代码。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
能源部门的深度脱碳将需要大量的随机可再生能源渗透和大量的网格资产协调。对于面对这种变化而负责维持电网稳定性和安全性的电力系统运营商来说,这是一个具有挑战性的范式。凭借从复杂数据集中学习并提供有关快速时间尺度的预测解决方案的能力,机器学习(ML)得到了很好的选择,可以帮助克服这些挑战,因为在未来几十年中,电力系统转变。在这项工作中,我们概述了与构建可信赖的ML模型相关的五个关键挑战(数据集生成,数据预处理,模型培训,模型评估和模型嵌入),这些模型从基于物理的仿真数据中学习。然后,我们演示如何将单个模块连接在一起,每个模块都克服了各自的挑战,在机器学习管道中的顺序阶段,如何有助于提高训练过程的整体性能。特别是,我们实施了通过反馈连接学习管道的不同元素的方法,从而在模型培训,绩效评估和重新训练之间“关闭循环”。我们通过学习与拟议的北海风能中心系统的详细模型相关的N-1小信号稳定性边缘来证明该框架,其组成模块的有效性及其反馈连接。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
最近的机器学习(ML)和深度学习(DL)的发展增加了所有部门的机会。 ML是一种重要的工具,可以应用于许多学科,但其直接应用于土木工程问题可能是挑战性的。在实验室中模拟的土木工程应用程序通常在现实世界测试中失败。这通常归因于用于培训和测试ML模型的数据之间的数据不匹配以及它在现实世界中遇到的数据,称为数据偏移的现象。然而,基于物理的ML模型集成了数据,部分微分方程(PDE)和数学模型以解决数据移位问题。基于物理的ML模型训练,以解决监督学习任务,同时尊重一般非线性方程描述的任何给定的物理定律。基于物理的ML,它在许多科学学科中占据中心阶段,在流体动力学,量子力学,计算资源和数据存储中起着重要作用。本文综述了基于物理学的ML历史及其在土木工程中的应用。
translated by 谷歌翻译
地下模拟使用计算模型来预测流体(例如油,水,气体)通过多孔介质的流动。这些模拟在工业应用(例如石油生产)中至关重要,在这些应用中,需要快速,准确的模型来进行高级决策,例如,进行井安置优化和现场开发计划。经典的有限差数数值模拟器需要大量的计算资源来对大规模现实世界的水库进行建模。另外,通过依靠近似物理模型,流线模拟器和数据驱动的替代模型在计算上更有效,但是它们不足以在大规模上对复杂的储层动力学进行建模。在这里,我们介绍了混合图网络模拟器(HGNS),这是一个数据驱动的替代模型,用于学习3D地下流体流的储层模拟。为了模拟局部和全球尺度上的复杂储层动力学,HGN由地下图神经网络(SGNN)组成,以建模流体流的演化和3D-U-NET,以建模压力的演变。 HGNS能够扩展到每个时间步长数百万个单元的网格,比以前的替代模型高两个数量级,并且可以准确地预测流体流量数十亿个时间步长(未来几年)。使用带有110万个单元的行业标准地下流数据集(SPE-10),我们证明HGNS能够将推理时间降低到与标准地下模拟器相比,最高18次,并且通过降低基于学习的模型,它可以优于其他基于学习的模型长期预测错误高达21%。
translated by 谷歌翻译
自从Navier Stokes方程的推导以来,已经有可能在数值上解决现实世界的粘性流问题(计算流体动力学(CFD))。然而,尽管中央处理单元(CPU)的性能取得了迅速的进步,但模拟瞬态流量的计算成本非常小,时间/网格量表物理学仍然是不现实的。近年来,机器学习(ML)技术在整个行业中都受到了极大的关注,这一大浪潮已经传播了流体动力学界的各种兴趣。最近的ML CFD研究表明,随着数据驱动方法的训练时间和预测时间之间的间隔增加,完全抑制了误差的增加是不现实的。应用ML的实用CFD加速方法的开发是剩余的问题。因此,这项研究的目标是根据物理信息传递学习制定现实的ML策略,并使用不稳定的CFD数据集验证了该策略的准确性和加速性能。该策略可以在监视跨耦合计算框架中管理方程的残差时确定转移学习的时间。因此,我们的假设是可行的,即连续流体流动时间序列的预测是可行的,因为中间CFD模拟定期不仅减少了增加残差,还可以更新网络参数。值得注意的是,具有基于网格的网络模型的交叉耦合策略不会损害计算加速度的仿真精度。在层流逆流CFD数据集条件下,该模拟加速了1.8次,包括参数更新时间。此可行性研究使用了开源CFD软件OpenFOAM和开源ML软件TensorFlow。
translated by 谷歌翻译
使热处理可控的一种可能的方法是收集有关产品当前状态的实时信息。通常,感觉设备无法轻松或根本捕获所有相关信息。数字双胞胎在实时模拟中使用虚拟探针缩小了这一差距,并与该过程同步。本文提出了一个基于物理的,数据驱动的数字双框架,用于自动食品处理。我们建议使用设备级别可执行的精益数字双胞胎概念,需要最小的计算负载,数据存储和传感器数据要求。这项研究重点是用于热过程的非侵入性降低模型(ROM)的简约实验设计。在训练数据中表面温度的高标准偏差与ROM测试中的均方根误差之间的高标准偏差之间的相关性($ r = -0.76 $)可以有效地选择训练数据。最佳ROM的平均均方根误差小于代表性测试集的1 kelvin(0.2%平均平均百分比误差)。 SP $ \ $ 1.8E4的仿真速度允许进行设备模型预测控制。拟议的数字双框架旨在适用于行业。通常,一旦在未提供对求解器的根级访问(例如商业仿真软件)中执行该过程的建模,就需要一旦在软件中执行该过程的建模,就需要进行非侵入式降级建模。仅使用一个数据集就可以实现降顺序模型的数据驱动训练,因为使用相关性来预测训练成功。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
在所需的环境保护系统中,可能不排除地下水。除了过度开发的问题外,与可持续发展的概念完全分歧外,另一个不容易忽略的问题涉及地下水的污染。主要是由于强化农业活动或工业化地区。在文献中,有几篇论文处理了运输问题,尤其是在确定发布历史记录或源位置的反问题上。本文的创新目的是开发一个数据驱动的模型,该模型能够分析多种情况,甚至强烈非线性,以解决前进和反向运输问题,从而保留结果的可靠性并降低不确定性。此外,该工具具有提供极快响应的特征,对于立即确定补救策略至关重要。将模型产生的优点与文献研究进行了比较。在这方面,经过训练以处理不同情况的馈电馈线人工神经网络代表数据驱动的模型。首先,在研究区域的特定观察点上确定污染物的浓度(正向问题);其次,要处理识别已知源位置的发布历史记录的反问题;然后,在一个污染物来源的情况下,确定了释放历史记录,同时识别源在研究区域的特定子域中的位置。最后,研究并估计了观察误差。结果令人满意地实现了结果,突出了ANN通过近似非线性函数来处理多种情况的能力,而无需物理观点来描述该现象,从而提供可靠的结果,并具有非常低的计算负担和不确定性。
translated by 谷歌翻译
This chapter sheds light on the synaptic organization of the brain from the perspective of computational neuroscience. It provides an introductory overview on how to account for empirical data in mathematical models, implement them in software, and perform simulations reflecting experiments. This path is demonstrated with respect to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic transmission, synaptic plasticity, and the heterogeneity across synapses. Each step and aspect of the modeling and simulation workflow comes with its own challenges and pitfalls, which are highlighted and addressed in detail.
translated by 谷歌翻译