神经符号(NESY)集成将符号推理与神经网络(NNS)结合在一起,用于需要感知和推理的任务。大多数NESY系统都依赖于逻辑知识的持续放松,并且在模型管道中没有做出离散决策。此外,这些方法假定给出了符号规则。在本文中,我们提出了深入的符号学习(DSL),这是一个学习NESY函数的NESY系统,即,(集合)感知函数的组成,将连续数据映射到离散符号,以及一组符号功能符号。 DSL同时学习感知和符号功能,同时仅接受其组成(NESY功能)训练。 DSL的关键新颖性是它可以创建内部(可解释的)符号表示形式,并将其映射到可区分的NN学习管道中的感知输入。自动选择创建的符号以生成最能解释数据的符号函数。我们提供实验分析,以证实DSL在同时学习感知和符号功能中的功效。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
人工智能的最终目标之一是从原始数据中学习通用和人类解剖知识。神经符号推理方法通过使用手动设计的符号知识库改善神经网络的训练来部分解决此问题。在从原始数据中学到符号知识的情况下,该知识缺乏解决复杂问题所需的表现力。在本文中,我们介绍了神经符号归纳学习者(NSIL),该方法训练神经网络从原始数据中提取潜在概念,而学习符号知识可以解决复杂问题,该知识是根据这些潜在概念定义的。我们方法的新颖性是一种基于神经和符号成分的训练性能,使符号学习者偏向于学习改进的知识的方法。我们评估了两个问题领域的NSIL,这些问题领域需要具有不同级别的复杂性学习知识,并证明NSIL学习知识,而这些知识是不可能使用其他神经符号系统学习的知识,同时就准确性和数据效率而言优于基线模型。
translated by 谷歌翻译
We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to scale the Multi-digit MNISTAdd benchmark to sums of 15 MNIST digits, up from 4 in competing systems. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.
translated by 谷歌翻译
我们提出了神经概率软逻辑(NEUPSL),这是一种新型的神经符号(NESY)框架,将最新的象征性推理与对深神经网络的低水平感知结合在一起。为了明确建模神经和符号表示之间的边界,我们引入了基于NESY Energy模型,这是一个结合神经和符号推理的基于能量的一般模型。使用此框架,我们展示了如何无缝整合神经和符号参数学习和推理。我们进行广泛的经验评估,并表明NEUPSL优于关节推断的现有方法,并且在几乎所有设置中的差异都显着降低。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
最近的工作表明,我们可以在学习系统中使用逻辑背景知识来弥补缺乏标记的培训数据。许多这样的方法通过创建编码此知识的损失函数来起作用。但是,即使在测试时间仍然有用,逻辑通常在训练后会被丢弃。相反,我们通过额外的计算步骤来完善预测来确保神经网络预测能够满足知识。我们介绍了可区分的改进功能,该功能找到了接近原始预测的校正预测。我们研究了如何有效有效地计算这些完善功能。使用新算法,我们结合了改进函数,以找到任何复杂性的逻辑公式的完善预测。该算法在复杂的SAT配方中发现了最佳的改进,以较少的迭代率明显更少,并且经常发现梯度下降无法进行的解决方案。
translated by 谷歌翻译
我们提出了一种新颖的通用方法,该方法可以找到动作的,离散的对象和效果类别,并为非平凡的行动计划建立概率规则。我们的机器人使用原始操作曲目与对象进行交互,该曲目被认为是早先获取的,并观察到它在环境中可以产生的效果。为了形成动作界面的对象,效果和关系类别,我们在预测性的,深的编码器折线网络中采用二进制瓶颈层,该网络以场景的形象和应用为输入应用的动作,并在场景中生成结果效果在像素坐标中。学习后,二进制潜在向量根据机器人的相互作用体验代表动作驱动的对象类别。为了将神经网络代表的知识提炼成对符号推理有用的规则,对决策树进行了训练以复制其解码器功能。概率规则是从树的决策路径中提取的,并在概率计划域定义语言(PPDDL)中表示,允许现成的计划者根据机器人的感觉运动体验所提取的知识进行操作。模拟机器人操纵器的建议方法的部署使发现对象属性的离散表示,例如``滚动''和``插入''。反过来,将这些表示形式用作符号可以生成有效的计划来实现目标,例如建造所需高度的塔楼,证明了多步物体操纵方法的有效性。最后,我们证明了系统不仅通过评估其对MNIST 8个式式域的适用性来限于机器人域域,在该域​​中,学习的符号允许生成将空图块移至任何给定位置的计划。
translated by 谷歌翻译
结合神经网络的鲁棒性的目标和象征方法的表征性地重新称为神经象征性AI的兴趣。神经象征性AI的最近进步通常考虑由不相交的神经和符号组件组成的专门定制架构,因此不能表现出所需的增益,这通过将它们集成到统一框架中可以实现。我们介绍斜杠 - 一种新颖的深层概率编程语言(DPPL)。在其核心,斜杠由神经概率谓词(NPPS)和逻辑节目组成,通过答案集编程团结一致。由NPPS产生的概率估计用作逻辑程序和原始输入数据之间的绑定元素,从而允许斜杠来应答任务依赖的逻辑查询。这允许斜杠在统一的框架中优雅地集成符号和神经组件。我们评估Mnist加法的基准数据的斜杠以及DPPLS的新任务,例如缺少数据预测和与最先进的性能设置预测,从而显示了我们方法的有效性和一般性。
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
推理,学习和决策的整合是构建更多普通AI系统的关键。作为朝这个方向的一步,我们提出了一种新颖的神经逻辑架构,可以解决电感逻辑编程(ILP)和深增强学习(RL)问题。我们的体系结构通过分配权重来谓词而不是规则来定义一阶逻辑程序的受限但呈现的连续空间。因此,它是完全可分的,可以用梯度下降有效地培训。此外,在与演员批评算法的深度RL设置中,我们提出了一种新颖的高效评论家建筑。与ILP和RL问题的最先进方法相比,我们的命题实现了出色的性能,同时能够提供完全可解释的解决方案和更好地缩放,特别是在测试阶段。
translated by 谷歌翻译
Neural-symbolic computing aims at integrating robust neural learning and sound symbolic reasoning into a single framework, so as to leverage the complementary strengths of both of these, seemingly unrelated (maybe even contradictory) AI paradigms. The central challenge in neural-symbolic computing is to unify the formulation of neural learning and symbolic reasoning into a single framework with common semantics, that is, to seek a joint representation between a neural model and a logical theory that can support the basic grounding learned by the neural model and also stick to the semantics of the logical theory. In this paper, we propose differentiable fuzzy $\mathcal{ALC}$ (DF-$\mathcal{ALC}$) for this role, as a neural-symbolic representation language with the desired semantics. DF-$\mathcal{ALC}$ unifies the description logic $\mathcal{ALC}$ and neural models for symbol grounding; in particular, it infuses an $\mathcal{ALC}$ knowledge base into neural models through differentiable concept and role embeddings. We define a hierarchical loss to the constraint that the grounding learned by neural models must be semantically consistent with $\mathcal{ALC}$ knowledge bases. And we find that capturing the semantics in grounding solely by maximizing satisfiability cannot revise grounding rationally. We further define a rule-based loss for DF adapting to symbol grounding problems. The experiment results show that DF-$\mathcal{ALC}$ with rule-based loss can improve the performance of image object detectors in an unsupervised learning way, even in low-resource situations.
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
Neural-symbolic computing (NeSy), which pursues the integration of the symbolic and statistical paradigms of cognition, has been an active research area of Artificial Intelligence (AI) for many years. As NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks, it may serve as a catalyst for the next generation of AI. In the present paper, we provide a systematic overview of the important and recent developments of research on NeSy AI. Firstly, we introduce study history of this area, covering early work and foundations. We further discuss background concepts and identify key driving factors behind the development of NeSy. Afterward, we categorize recent landmark approaches along several main characteristics that underline this research paradigm, including neural-symbolic integration, knowledge representation, knowledge embedding, and functionality. Then, we briefly discuss the successful application of modern NeSy approaches in several domains. Finally, we identify the open problems together with potential future research directions. This survey is expected to help new researchers enter this rapidly-developing field and accelerate progress towards data-and knowledge-driven AI.
translated by 谷歌翻译
为了将归纳推理与感知能力相结合,我们开发了神经符号程序合成的技术,其中首先将神经网络的感知输入解析为低维的可解释表示,然后由合成程序处理。我们探索了一些放松问题的技术,并共同学习所有端到端的模块,梯度下降:多任务学习;摊销推理;过度参数化;以及惩罚冗长计划的可区分策略。收集到该工具箱可提高梯度指导程序搜索的稳定性,并提出学习如何将输入视为离散抽象的方法,以及如何象征性地处理这些抽象作为程序。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
尽管在现代的机器学习算法的最新进展,其内在机制的不透明仍是采用的障碍。在人工智能系统灌输信心和信任,解释的人工智能已成为提高现代机器学习算法explainability的响应。归纳逻辑程序(ILP),符号人工智能的子场中,起着产生,因为它的直观的逻辑驱动框架的可解释的解释有希望的作用。 ILP有效利用绎推理产生从实例和背景知识解释的一阶分句理论。然而,在发展中通过ILP需要启发方法的几个挑战,在实践中他们的成功应用来解决。例如,现有的ILP系统通常拥有广阔的解空间,以及感应解决方案是对噪声和干扰非常敏感。本次调查总结在ILP的最新进展和统计关系学习和神经象征算法的讨论,其中提供给ILP协同意见。继最新进展的严格审查,我们划定观察的挑战,突出对发展不言自明的人工智能系统进一步ILP动机研究的潜在途径。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译