Neural-symbolic computing aims at integrating robust neural learning and sound symbolic reasoning into a single framework, so as to leverage the complementary strengths of both of these, seemingly unrelated (maybe even contradictory) AI paradigms. The central challenge in neural-symbolic computing is to unify the formulation of neural learning and symbolic reasoning into a single framework with common semantics, that is, to seek a joint representation between a neural model and a logical theory that can support the basic grounding learned by the neural model and also stick to the semantics of the logical theory. In this paper, we propose differentiable fuzzy $\mathcal{ALC}$ (DF-$\mathcal{ALC}$) for this role, as a neural-symbolic representation language with the desired semantics. DF-$\mathcal{ALC}$ unifies the description logic $\mathcal{ALC}$ and neural models for symbol grounding; in particular, it infuses an $\mathcal{ALC}$ knowledge base into neural models through differentiable concept and role embeddings. We define a hierarchical loss to the constraint that the grounding learned by neural models must be semantically consistent with $\mathcal{ALC}$ knowledge bases. And we find that capturing the semantics in grounding solely by maximizing satisfiability cannot revise grounding rationally. We further define a rule-based loss for DF adapting to symbol grounding problems. The experiment results show that DF-$\mathcal{ALC}$ with rule-based loss can improve the performance of image object detectors in an unsupervised learning way, even in low-resource situations.
translated by 谷歌翻译
已经开发了许多本体论,即描述逻辑(DL)知识库,以提供有关各个领域的丰富知识,并且其中许多基于ALC,即原型和表达的DL或其扩展。探索ALC本体论的主要任务是计算语义范围。符号方法可以保证声音和完整的语义需要,但对不一致和缺失信息敏感。为此,我们提出了一个模糊的ALC本体神经推理器Falcon。 Falcon使用模糊逻辑运算符为任意ALC本体论生成单个模型结构,并使用多个模型结构来计算语义索引。理论结果表明,保证猎鹰是计算ALC本体学语义索引的声音和完整算法。实验结果表明,Falcon不仅可以近似推理(不完整的本体理由)和chanseansissist的推理(因本体不一致的推理),还可以通过结合ALC本体的背景知识来改善生物医学领域的机器学习。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
已经开发了许多本体论,即描述逻辑(DL)知识库,以提供有关各个领域的丰富知识。本体论由一个ABOX,即两个实体之间或一个概念与实体之间的断言公理组成,以及Tbox,即两个概念之间的术语公理。神经逻辑推理(NLR)是探索此类知识库的基本任务,该任务旨在根据查询和答案的分布式表示,以逻辑操作来回答多跳的查询。尽管以前的NLR方法可以给出特定的实体级答案,即ABOX答案,但它们无法提供描述性概念级答案,即Tbox答案,其中每个概念都是对一组实体的描述。换句话说,以前的NLR方法在忽略Tbox时唯一的原因是本体论的Abox。特别是,提供Tbox答案可以通过描述性概念来推断每个查询的解释,这使用户可以理解答案,并且在应用本体论领域具有极大的有用性。在这项工作中,我们提出了整个Tbox和Abox(TA-NLR)的神经逻辑推理的问题,该问题解决了需要解决在概念上纳入,代表和操作时需要解决的挑战。我们提出了一种原始解决方案,名为Ta-nlr的TAR。首先,我们合并了基于本体论公理的描述以提供概念的来源。然后,我们将概念和查询表示为模糊集,即其元素具有成员程度的集合,以与实体桥接概念和查询。此外,我们设计了涉及概念的概念的概念和查询以进行优化和推理的概念的设计操作员。两个现实世界数据集的广泛实验结果证明了TAR对TA-NLR的有效性。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
知识表示中的一个突出问题是如何应对域名知识的本体的隐性后果来回回答查询。虽然这个问题在描述逻辑本体的领域中已被广泛研究,但在模糊或不精确的知识的背景下,令人惊讶地忽略了忽视,特别是从数学模糊逻辑的角度来看。在本文中,我们研究了应答联合查询和阈值查询的问题。模糊DL-Lite中的本体。具体而言,我们通过重写方法展示阈值查询应答W.r.t.一致的本体中仍保持在数据复杂性的$ AC_0 $中,但该联合查询应答高度依赖于所选三角标准,这对底层语义产生了影响。对于IDEMPodent G \“Odel T-Norm,我们提供了一种基于古典案例的减少的有效方法。本文在理论和实践中正在考虑和逻辑编程(TPLP)的实践。
translated by 谷歌翻译
在本文中,我们建立了模糊和优惠语义之间的联系,用于描述逻辑和自组织地图,这些地图已被提出为可能的候选人来解释类别概括的心理机制。特别是,我们表明,在训练之后的自组织地图的输入/输出行为可以通过模糊描述逻辑解释以及基于概念 - 方面的多次方法语义来描述逻辑解释以及考虑偏好的优先解释关于不同的概念,最近提出了排名和加权污染描述逻辑。可以通过模型检查模糊或优先解释来证明网络的属性。从模糊解释开始,我们还为此神经网络模型提供了概率账户。
translated by 谷歌翻译
主张神经符号人工智能(NESY)断言,将深度学习与象征性推理相结合将导致AI更强大,而不是本身。像深度学习一样成功,人们普遍认为,即使我们最好的深度学习系统也不是很擅长抽象推理。而且,由于推理与语言密不可分,因此具有直觉的意义,即自然语言处理(NLP)将成为NESY特别适合的候选人。我们对实施NLP实施NESY的研究进行了结构化审查,目的是回答Nesy是否确实符合其承诺的问题:推理,分布概括,解释性,学习和从小数据的可转让性以及新的推理到新的域。我们研究了知识表示的影响,例如规则和语义网络,语言结构和关系结构,以及隐式或明确的推理是否有助于更高的承诺分数。我们发现,将逻辑编译到神经网络中的系统会导致满足最NESY的目标,而其他因素(例如知识表示或神经体系结构的类型)与实现目标没有明显的相关性。我们发现在推理的定义方式上,特别是与人类级别的推理有关的许多差异,这会影响有关模型架构的决策并推动结论,这些结论在整个研究中并不总是一致的。因此,我们倡导采取更加有条不紊的方法来应用人类推理的理论以及适当的基准的发展,我们希望这可以更好地理解该领域的进步。我们在GitHub上提供数据和代码以进行进一步分析。
translated by 谷歌翻译
Neuro-symbolic AI attempts to integrate neural and symbolic architectures in a manner that addresses strengths and weaknesses of each, in a complementary fashion, in order to support robust strong AI capable of reasoning, learning, and cognitive modeling. In this paper we consider the intensional First Order Logic (IFOL) as a symbolic architecture of modern robots, able to use natural languages to communicate with humans and to reason about their own knowledge with self-reference and abstraction language property. We intend to obtain the grounding of robot's language by experience of how it uses its neuronal architectures and hence by associating this experience with the mining (sense) of non-defined language concepts (particulars/individuals and universals) in PRP (Properties/Relations/propositions) theory of IFOL. We consider three natural language levels: The syntax of particular natural language (Italian, French, etc..), and two universal language properties: its semantic logic structure (based on virtual predicates of FOL and logic connectives), and its corresponding conceptual PRP structure which universally represents the composite mining of FOL formulae grounded on the robot's neuro system.
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
我们考虑从示例中学习复合代数表达式语义的问题。结果是一个多功能框架,用于研究可以放入以下抽象形式中的学习任务:输入是部分代数$ \ alg $和一组有限的示例$(\ varphi_1,o_1),(\ varphi_2,o_2,o_2),\ ldots $,每个由代数项$ \ varphi_i $和一组对象〜$ o_i $组成。目的是在$ \ alg $中同时填写缺失的代数操作,并将每个$ \ varphi_i $的变量填充$ o_i $,以便优化条款的合并价值。我们通过案例研究在语法推理,图像学习和逻辑场景描述的基础中证明了该框架的适用性。
translated by 谷歌翻译
尽管在现代的机器学习算法的最新进展,其内在机制的不透明仍是采用的障碍。在人工智能系统灌输信心和信任,解释的人工智能已成为提高现代机器学习算法explainability的响应。归纳逻辑程序(ILP),符号人工智能的子场中,起着产生,因为它的直观的逻辑驱动框架的可解释的解释有希望的作用。 ILP有效利用绎推理产生从实例和背景知识解释的一阶分句理论。然而,在发展中通过ILP需要启发方法的几个挑战,在实践中他们的成功应用来解决。例如,现有的ILP系统通常拥有广阔的解空间,以及感应解决方案是对噪声和干扰非常敏感。本次调查总结在ILP的最新进展和统计关系学习和神经象征算法的讨论,其中提供给ILP协同意见。继最新进展的严格审查,我们划定观察的挑战,突出对发展不言自明的人工智能系统进一步ILP动机研究的潜在途径。
translated by 谷歌翻译
Neural-symbolic computing (NeSy), which pursues the integration of the symbolic and statistical paradigms of cognition, has been an active research area of Artificial Intelligence (AI) for many years. As NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks, it may serve as a catalyst for the next generation of AI. In the present paper, we provide a systematic overview of the important and recent developments of research on NeSy AI. Firstly, we introduce study history of this area, covering early work and foundations. We further discuss background concepts and identify key driving factors behind the development of NeSy. Afterward, we categorize recent landmark approaches along several main characteristics that underline this research paradigm, including neural-symbolic integration, knowledge representation, knowledge embedding, and functionality. Then, we briefly discuss the successful application of modern NeSy approaches in several domains. Finally, we identify the open problems together with potential future research directions. This survey is expected to help new researchers enter this rapidly-developing field and accelerate progress towards data-and knowledge-driven AI.
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
机器学习方法尤其是深度神经网络取得了巨大的成功,但其中许多往往依赖于一些标记的样品进行训练。在真实世界的应用中,我们经常需要通过例如具有新兴预测目标和昂贵的样本注释的动态上下文来解决样本短缺。因此,低资源学习,旨在学习具有足够资源(特别是培训样本)的强大预测模型,现在正在被广泛调查。在所有低资源学习研究中,许多人更喜欢以知识图(kg)的形式利用一些辅助信息,这对于知识表示变得越来越受欢迎,以减少对标记样本的依赖。在这项调查中,我们非常全面地审查了90美元的报纸关于两个主要的低资源学习设置 - 零射击学习(ZSL)的预测,从未出现过训练,而且很少拍摄的学习(FSL)预测的新类仅具有可用的少量标记样本。我们首先介绍了ZSL和FSL研究中使用的KGS以及现有的和潜在的KG施工解决方案,然后系统地分类和总结了KG感知ZSL和FSL方法,将它们划分为不同的范例,例如基于映射的映射,数据增强,基于传播和基于优化的。我们接下来呈现了不同的应用程序,包括计算机视觉和自然语言处理中的kg增强预测任务,还包括kg完成的任务,以及每个任务的一些典型评估资源。我们最终讨论了一些关于新学习和推理范式的方面的一些挑战和未来方向,以及高质量的KGs的建设。
translated by 谷歌翻译
Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.
translated by 谷歌翻译
神经符号(NESY)集成将符号推理与神经网络(NNS)结合在一起,用于需要感知和推理的任务。大多数NESY系统都依赖于逻辑知识的持续放松,并且在模型管道中没有做出离散决策。此外,这些方法假定给出了符号规则。在本文中,我们提出了深入的符号学习(DSL),这是一个学习NESY函数的NESY系统,即,(集合)感知函数的组成,将连续数据映射到离散符号,以及一组符号功能符号。 DSL同时学习感知和符号功能,同时仅接受其组成(NESY功能)训练。 DSL的关键新颖性是它可以创建内部(可解释的)符号表示形式,并将其映射到可区分的NN学习管道中的感知输入。自动选择创建的符号以生成最能解释数据的符号函数。我们提供实验分析,以证实DSL在同时学习感知和符号功能中的功效。
translated by 谷歌翻译
通过将逻辑推理与可区分的操作员近似逻辑推理来整合逻辑推理和机器学习是神经符号系统中广泛使用的技术。但是,一些可区分的操作员可能会在反向传播过程中带来明显的偏见,并降低神经符号学习的表现。在本文中,我们揭示了这种偏见,称为\ textit {含义偏见}在源自模糊逻辑运算符的损失函数中很常见。此外,我们提出了一种简单而有效的方法,将偏见的损失函数转换为\ textit {减少含义偏见逻辑损失(RILL)}以解决上述问题。实证研究表明,与偏见的逻辑损失函数相比,RILL可以取得重大改进,尤其是当知识库不完整时,并且在标记数据不足时比较的方法更强大。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译