在现代深度学习中,最近又越来越多的文献,关于深高斯神经网络(NNS)的大宽度渐近性能之间的相互作用,即具有高斯分布重量的深NNS和高斯随机过程(SPS)。事实证明,这种相互作用在高斯SP先验下的贝叶斯推论中至关重要,对通过梯度下降训练的无限宽的深NN的内核回归以及无限宽的NN中的信息传播。通过经验分析的激励,该经验分析表明了用稳定的NN重量代替高斯分布的潜力,在本文中,我们对(完全连接的)进料深度稳定NN的大差异行为进行了严格的分析,即深NNS,即具有稳定的分布重量。我们表明,随着宽度共同在NN的层上共同进入无限,即``关节生长''的设置,重新缩放的深稳定nn弱收敛到稳定的SP,其分布通过NN的层递归地表征。 NN的三角结构,这是一个非标准的渐近问题,我们提出了一种独立利益的感应方法。然后,我们在````''''下建立了对稳定的SP的Sup-Norm收敛速率,``关节增长和``顺序增长''的宽度在NN的层上。这样的结果提供了'关节增长'和``顺序增长''的差异,表明前者的速率比速度慢。后者根据层的深度和NN的投入数量。我们的工作扩展了有关深gaussian nns无限宽限制的一些最新结果,以至于更通用的深稳定稳定性NNS,这是第一个结果,这是对融合率的第一个结果。``联合增长''环境。
translated by 谷歌翻译
最近有关于高斯神经网络(NNS)的大宽度特性的文献,即,其权重根据高斯分布分布。两个流行的问题是:i)研究NNS的大宽度行为,这些行为在高斯工艺方面提供了无限宽的限制的表征; ii)对NNS的大宽度训练动力学的研究,该动力在训练后NN和执行核回归之间具有等效性,并以确定性核为确定性内核,称为神经切线核(NTK)。在本文中,我们考虑了$ \ alpha $ stable NNS的这些问题,通过假设NN的权重分配为$ \ alpha $ - 稳定分布,它通过$ \ alpha \ in(0,2] $,概括了Gaussian nns。即带有沉重的尾巴的分布。对于带有relu激活功能的浅$ \ alpha $ stable nns,我们表明,如果NN的宽度转移到无穷大,那么重新缩放的NN弱收敛到$ \ alpha $ stable的过程,即随机的过程具有$ \ alpha $稳定的有限维分布的过程。作为高斯设置的新颖性,在$ \ alpha $稳定的设置中,激活功能的选择会影响NN的缩放,即:实现无限宽的$ \ alpha $稳定过程,relu功能需要相对于子线性函数进行附加的对数缩放。那么,我们的主要贡献是对浅的$ \ alpha $ stable relu-nns的NTK分析,这是领导的在训练恢复的NN和执行内核回归机智之间具有等效性h $(\ alpha/2)$ - 稳定的随机内核。这种内核的随机性是相对于高斯环境的进一步新颖性,即:在$ \ alpha $稳定性中,初始化时NN的随机性在NTK分析中不会消失,从而诱导了分布的分布基础内核回归的内核。
translated by 谷歌翻译
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature. 1
translated by 谷歌翻译
How well does a classic deep net architecture like AlexNet or VGG19 classify on a standard dataset such as CIFAR-10 when its "width"-namely, number of channels in convolutional layers, and number of nodes in fully-connected internal layers -is allowed to increase to infinity? Such questions have come to the forefront in the quest to theoretically understand deep learning and its mysteries about optimization and generalization. They also connect deep learning to notions such as Gaussian processes and kernels. A recent paper [Jacot et al., 2018] introduced the Neural Tangent Kernel (NTK) which captures the behavior of fully-connected deep nets in the infinite width limit trained by gradient descent; this object was implicit in some other recent papers. An attraction of such ideas is that a pure kernel-based method is used to capture the power of a fully-trained deep net of infinite width. The current paper gives the first efficient exact algorithm for computing the extension of NTK to convolutional neural nets, which we call Convolutional NTK (CNTK), as well as an efficient GPU implementation of this algorithm. This results in a significant new benchmark for performance of a pure kernel-based method on CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019], and only 6% lower than the performance of the corresponding finite deep net architecture (once batch normalization etc. are turned off). Theoretically, we also give the first non-asymptotic proof showing that a fully-trained sufficiently wide net is indeed equivalent to the kernel regression predictor using NTK.
translated by 谷歌翻译
在一个拟合训练数据的深度神经网络(NN)中找到参数是一个非渗透优化问题,但基本的一阶优化方法(梯度下降)在许多实际情况下,具有完美拟合(零损失)的全局优化器。我们在限制性制度中检查残留神经网络(Reset)的剩余神经网络(Reset)的情况的这种现象,其中每个层(宽度)的层数(深度)和权重的数量均转到无穷大。首先,我们使用平均场限制参数来证明参数训练的梯度下降成为概率分布的梯度流,其特征在于大NN限制中的部分微分方程(PDE)。接下来,我们表明,在某些假设下,PDE的解决方案在训练时间内收敛到零损失解决方案。这些结果表明,如果Reset足够大,则reset的培训给出了近零损失。我们给出了减少给定阈值以下低于给定阈值的损失所需的深度和宽度的估计值。
translated by 谷歌翻译
The logit outputs of a feedforward neural network at initialization are conditionally Gaussian, given a random covariance matrix defined by the penultimate layer. In this work, we study the distribution of this random matrix. Recent work has shown that shaping the activation function as network depth grows large is necessary for this covariance matrix to be non-degenerate. However, the current infinite-width-style understanding of this shaping method is unsatisfactory for large depth: infinite-width analyses ignore the microscopic fluctuations from layer to layer, but these fluctuations accumulate over many layers. To overcome this shortcoming, we study the random covariance matrix in the shaped infinite-depth-and-width limit. We identify the precise scaling of the activation function necessary to arrive at a non-trivial limit, and show that the random covariance matrix is governed by a stochastic differential equation (SDE) that we call the Neural Covariance SDE. Using simulations, we show that the SDE closely matches the distribution of the random covariance matrix of finite networks. Additionally, we recover an if-and-only-if condition for exploding and vanishing norms of large shaped networks based on the activation function.
translated by 谷歌翻译
为了理论上了解训练有素的深神经网络的行为,有必要研究来自随机初始化的梯度方法引起的动态。然而,这些模型的非线性和组成结构使得这些动态难以分析。为了克服这些挑战,最近出现了大宽度的渐近学作为富有成效的观点,并导致了对真实世界的深网络的实用洞察。对于双层神经网络,已经通过这些渐近学理解,训练模型的性质根据初始随机权重的规模而变化,从内核制度(大初始方差)到特征学习制度(对于小初始方差)。对于更深的网络,更多的制度是可能的,并且在本文中,我们详细研究了与神经网络的“卑鄙字段”限制相对应的“小”初始化的特定选择,我们称之为可分配的参数化(IP)。首先,我们展示了标准I.I.D.零平均初始化,具有多于四个层的神经网络的可集参数,从无限宽度限制的静止点开始,并且不会发生学习。然后,我们提出了各种方法来避免这种琐碎的行为并详细分析所得到的动态。特别是,这些方法中的一种包括使用大的初始学习速率,并且我们表明它相当于最近提出的最大更新参数化$ \ mu $ p的修改。我们将结果与图像分类任务的数值实验确认,其另外显示出在尚未捕获的激活功能的各种选择之间的行为中的强烈差异。
translated by 谷歌翻译
近年来,人们对无限宽网络与高斯流程之间的对应关系产生了越来越多的兴趣。尽管当前的神经网络高斯过程理论具有有效性和优雅性,但据我们所知,所有神经网络高斯过程基本上都是通过增加宽度引起的。但是,在深度学习的时代,关于神经网络的更多关注是它的深度以及深度如何影响网络的行为。受宽度深度对称考虑因素的启发,我们使用快捷网络表明,增加神经网络的深度也会引起高斯过程,这是对现有理论的宝贵补充,并有助于揭示的真实情况深度学习。除了深入提出的高斯过程之外,我们从理论上表征了其均匀的紧密度和高斯工艺过程中最小的特征值。这些特征不仅可以增强我们对拟议深度引起的高斯过程的理解,而且还可以为未来的应用铺平道路。最后,我们通过对两个基准数据集的回归实验来检查提出的高斯过程的性能。
translated by 谷歌翻译
我们研究了与深神经网络分析有关的随机矩阵产物的奇异值的分布。然而,矩阵类似于样品协方差矩阵的乘积,一个重要的区别是,假定的种群协方差矩阵是非随机或随机的,但独立于统计和随机矩阵理论中的随机数据矩阵,现在是随机数据的某些功能矩阵(深神经网络术语中的突触重量矩阵)。该问题在最近的工作[25,13]中已通过使用自由概率理论的技术。但是,自由概率理论涉及独立于数据矩阵的人口协方差矩阵,因此必须证明其适用性。使用随机矩阵理论的技术版本,对于具有独立条目的高斯数据矩阵,具有独立条目的高斯数据矩阵(一种自由概率的标准分析模型)的理由。在本文中,我们使用另一种更简化的随机矩阵理论技术的版本将[22]的结果推广到突触重量矩阵的条目仅是独立分布的随机变量,均值和有限第四,片刻。特别是,这扩展了所谓的宏观普遍性在被考虑的随机矩阵上的特性。
translated by 谷歌翻译
我们引入了重新定性,这是一种数据依赖性的重新聚集化,将贝叶斯神经网络(BNN)转化为后部的分布,其KL对BNN对BNN的差异随着层宽度的增长而消失。重新定义图直接作用于参数,其分析简单性补充了宽BNN在功能空间中宽BNN的已知神经网络过程(NNGP)行为。利用重新定性,我们开发了马尔可夫链蒙特卡洛(MCMC)后采样算法,该算法将BNN更快地混合在一起。这与MCMC在高维度上的表现差异很差。对于完全连接和残留网络,我们观察到有效样本量高达50倍。在各个宽度上都取得了改进,并在层宽度的重新培训和标准BNN之间的边缘。
translated by 谷歌翻译
本文介绍了梯度下降到全球最低最低限度的新标准。该标准用于表明,当训练任何具有光滑且严格增加激活功能的前馈神经网络时,具有适当初始化的梯度下降将收敛到全局最小值,前提是输入维度大于或等于数据点的数量。先前工作的主要区别在于,网络的宽度可以是固定的数字,而不是作为数据点数量的某些倍数或功率而不现实地生长。
translated by 谷歌翻译
协方差估计在功能数据分析中普遍存在。然而,对多维域的功能观测的情况引入了计算和统计挑战,使标准方法有效地不适用。为了解决这个问题,我们将“协方差网络”(CoVNet)介绍为建模和估算工具。 Covnet模型是“Universal” - 它可用于近似于达到所需精度的任何协方差。此外,该模型可以有效地拟合到数据,其神经网络架构允许我们在实现中采用现代计算工具。 Covnet模型还承认了一个封闭形式的实体分解,可以有效地计算,而不构建协方差本身。这有助于在CoVnet的背景下轻松存储和随后操纵协方差。我们建立了拟议估计者的一致性,得出了汇合速度。通过广泛的仿真研究和休息状态FMRI数据的应用,证明了所提出的方法的有用性。
translated by 谷歌翻译
在分析过度参数化神经网络的训练动力学方面的最新进展主要集中在广泛的网络上,因此无法充分解决深度在深度学习中的作用。在这项工作中,我们介绍了第一个无限深层但狭窄的神经网络的训练保证。我们研究具有特定初始化的多层感知器(MLP)的无限深度极限,并使用NTK理论建立了可训练性保证。然后,我们将分析扩展到无限深的卷积神经网络(CNN),并进行简短的实验。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
找到Reset中的参数的最佳配置是一个非凸显最小化问题,但一阶方法尽管如此,找到了过度分辨率制度的全局最优。通过将Reset的训练过程转化为梯度流部分微分方程(PDE)和检查该限制过程的收敛性能,我们研究了这种现象。假设激活函数为2美元 - 最佳或部分$ 1 $-homerence;正则Relu满足后一种条件。我们表明,如果Reset足够大,则深度和宽度根据代数上的准确性和置信水平,一阶优化方法可以找到适合培训数据的全局最小化器。
translated by 谷歌翻译
在本文中,我们通过任意大量的隐藏层研究了全连接的前馈深度Relu Ann,我们证明了在假设不正常化的概率密度函数下,在训练中具有随机初始化的GD优化方法的风险的融合在考虑的监督学习问题的输入数据的概率分布是分段多项式,假设目标函数(描述输入数据与输出数据之间的关系)是分段多项式,并且在假设风险函数下被认为的监督学习问题至少承认至少一个常规全球最低限度。此外,在浅句的特殊情况下只有一个隐藏的层和一维输入,我们还通过证明对每个LipsChitz连续目标功能的培训来验证这种假设,风险景观中存在全球最小值。最后,在具有Relu激活的深度广域的训练中,我们还研究梯度流(GF)差分方程的解决方案,并且我们证明每个非发散的GF轨迹会聚在临界点的多项式收敛速率(在限制意义上FR \'ECHET子提让性)。我们的数学融合分析造成了来自真实代数几何的工具,例如半代数函数和广义Kurdyka-Lojasiewicz不等式,从功能分析(如Arzel \)Ascoli定理等工具,在来自非本地结构的工具中作为限制FR \'echet子分子的概念,以及具有固定架构的浅印刷ANN的实现功能的事实形成由Petersen等人显示的连续功能集的封闭子集。
translated by 谷歌翻译
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit (16; 4; 7; 13; 6), thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f θ (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinitewidth limit, the network function f θ follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.
translated by 谷歌翻译