为了理论上了解训练有素的深神经网络的行为,有必要研究来自随机初始化的梯度方法引起的动态。然而,这些模型的非线性和组成结构使得这些动态难以分析。为了克服这些挑战,最近出现了大宽度的渐近学作为富有成效的观点,并导致了对真实世界的深网络的实用洞察。对于双层神经网络,已经通过这些渐近学理解,训练模型的性质根据初始随机权重的规模而变化,从内核制度(大初始方差)到特征学习制度(对于小初始方差)。对于更深的网络,更多的制度是可能的,并且在本文中,我们详细研究了与神经网络的“卑鄙字段”限制相对应的“小”初始化的特定选择,我们称之为可分配的参数化(IP)。首先,我们展示了标准I.I.D.零平均初始化,具有多于四个层的神经网络的可集参数,从无限宽度限制的静止点开始,并且不会发生学习。然后,我们提出了各种方法来避免这种琐碎的行为并详细分析所得到的动态。特别是,这些方法中的一种包括使用大的初始学习速率,并且我们表明它相当于最近提出的最大更新参数化$ \ mu $ p的修改。我们将结果与图像分类任务的数值实验确认,其另外显示出在尚未捕获的激活功能的各种选择之间的行为中的强烈差异。
translated by 谷歌翻译
由于其宽度趋于无穷大,如果梯度下降下的深度神经网络的行为可以简化和可预测(例如,如果神经切线核(NTK)给出,则如果适当地进行了参数化(例如,NTK参数化)。但是,我们表明,神经网络的标准和NTK参数化不接受可以学习特征的无限宽度限制,这对于训练和转移学习至关重要。我们对标准参数化提出了简单的修改,以允许在极限内进行特征学习。使用 * Tensor程序 *技术,我们为此类限制提供了明确的公式。在Word2Vec和Omniglot上通过MAML进行的几杆学习,这是两个依赖特征学习的规范任务,我们准确地计算了这些限制。我们发现它们的表现都优于NTK基准和有限宽度网络,后者接近无限宽度的特征学习表现,随着宽度的增加。更普遍地,我们对神经网络参数化的自然空间进行分类,该空间概括了标准,NTK和平均场参数化。我们显示1)该空间中的任何参数化都可以接受特征学习或具有内核梯度下降给出的无限宽度训练动力学,但并非两者兼而有之; 2)可以使用Tensor程序技术计算任何此类无限宽度限制。可以在github.com/edwardjhu/tp4上找到我们的实验代码。
translated by 谷歌翻译
The logit outputs of a feedforward neural network at initialization are conditionally Gaussian, given a random covariance matrix defined by the penultimate layer. In this work, we study the distribution of this random matrix. Recent work has shown that shaping the activation function as network depth grows large is necessary for this covariance matrix to be non-degenerate. However, the current infinite-width-style understanding of this shaping method is unsatisfactory for large depth: infinite-width analyses ignore the microscopic fluctuations from layer to layer, but these fluctuations accumulate over many layers. To overcome this shortcoming, we study the random covariance matrix in the shaped infinite-depth-and-width limit. We identify the precise scaling of the activation function necessary to arrive at a non-trivial limit, and show that the random covariance matrix is governed by a stochastic differential equation (SDE) that we call the Neural Covariance SDE. Using simulations, we show that the SDE closely matches the distribution of the random covariance matrix of finite networks. Additionally, we recover an if-and-only-if condition for exploding and vanishing norms of large shaped networks based on the activation function.
translated by 谷歌翻译
深度重新结合因实现最新的机器学习任务而被认可。但是,这些体系结构的出色性能取决于培训程序,需要精心制作以避免消失或爆炸梯度,尤其是随着深度$ l $的增加。关于如何减轻此问题,尚无共识,尽管广泛讨论的策略在于将每一层的输出缩放为$ \ alpha_l $。我们在概率环境中显示标准I.I.D.初始化,唯一的非平凡动力学是$ \ alpha_l = 1/\ sqrt {l} $(其他选择导致爆炸或身份映射)。该缩放因子在连续的时间限制中对应于神经随机微分方程,这与广泛的解释相反,即深度重新连接是神经普通微分方程的离散化。相比之下,在后一种制度中,具有特定相关初始化和$ \ alpha_l = 1/l $获得稳定性。我们的分析表明,与层指数的函数之间的缩放比例和规律性之间存在很强的相互作用。最后,在一系列实验中,我们表现出由这两个参数驱动的连续范围,这在训练之前和之后会共同影响性能。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
变形金刚在几个领域取得了巨大的成功,从自然语言处理到计算机视觉。然而,最近已经证明,堆叠自发注意层(变压器的独特架构成分)可能会导致在初始化时代币表示的等级崩溃。是否以及如何影响训练的等级崩溃的问题仍然没有得到答复,其调查对于对该架构的更全面理解是必要的。在这项工作中,我们对这种现象的原因和影响有了新的启示。首先,我们表明,代币表示的等级崩溃会导致查询和钥匙的梯度在初始化时消失,从而阻碍了培训。此外,我们提供了对等级崩溃的起源的详尽描述,并讨论了如何通过对残留分支的适当深度依赖性缩放来预防它。最后,我们的分析揭示了特定的体系结构超参数对查询和值的梯度有所不同,从而导致不成比例的梯度规范。这暗示了一种解释,用于广泛使用自适应方法进行变压器的优化。
translated by 谷歌翻译
我们为生成对抗网络(GAN)提出了一个新颖的理论框架。我们揭示了先前分析的基本缺陷,通过错误地对GANS的训练计划进行了错误的建模,该缺陷受到定义不定的鉴别梯度的约束。我们克服了这个问题,该问题阻碍了对GAN培训的原则研究,并考虑了歧视者的体系结构在我们的框架内解决它。为此,我们通过其神经切线核为歧视者提供了无限宽度神经网络的理论。我们表征了训练有素的判别器,以实现广泛的损失,并建立网络的一般可怜性属性。由此,我们获得了有关生成分布的融合的新见解,从而促进了我们对GANS训练动态的理解。我们通过基于我们的框架的分析工具包来证实这些结果,并揭示了与GAN实践一致的直觉。
translated by 谷歌翻译
This paper studies the infinite-width limit of deep linear neural networks initialized with random parameters. We obtain that, when the number of neurons diverges, the training dynamics converge (in a precise sense) to the dynamics obtained from a gradient descent on an infinitely wide deterministic linear neural network. Moreover, even if the weights remain random, we get their precise law along the training dynamics, and prove a quantitative convergence result of the linear predictor in terms of the number of neurons. We finally study the continuous-time limit obtained for infinitely wide linear neural networks and show that the linear predictors of the neural network converge at an exponential rate to the minimal $\ell_2$-norm minimizer of the risk.
translated by 谷歌翻译
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature. 1
translated by 谷歌翻译
一项开创性的工作[Jacot等,2018]表明,在特定参数化下训练神经网络等同于执行特定的内核方法,因为宽度延伸到无穷大。这种等效性为将有关内核方法的丰富文献结果应用于神经网的结果开辟了一个有希望的方向,而神经网络很难解决。本调查涵盖了内核融合的关键结果,因为宽度进入无穷大,有限宽度校正,应用以及对相应方法的局限性的讨论。
translated by 谷歌翻译
The study of feature propagation at initialization in neural networks lies at the root of numerous initialization designs. An assumption very commonly made in the field states that the pre-activations are Gaussian. Although this convenient Gaussian hypothesis can be justified when the number of neurons per layer tends to infinity, it is challenged by both theoretical and experimental works for finite-width neural networks. Our major contribution is to construct a family of pairs of activation functions and initialization distributions that ensure that the pre-activations remain Gaussian throughout the network's depth, even in narrow neural networks. In the process, we discover a set of constraints that a neural network should fulfill to ensure Gaussian pre-activations. Additionally, we provide a critical review of the claims of the Edge of Chaos line of works and build an exact Edge of Chaos analysis. We also propose a unified view on pre-activations propagation, encompassing the framework of several well-known initialization procedures. Finally, our work provides a principled framework for answering the much-debated question: is it desirable to initialize the training of a neural network whose pre-activations are ensured to be Gaussian?
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
由于Jacot等人的著名结果,神经切线内核(NTK)被广泛用于分析过多散热性神经网络。 (2018):在无限宽度限制中,NTK在训练过程中是确定性和恒定的。但是,该结果无法解释深网的行为,因为如果深度和宽度同时无穷大,通常不会成立。在本文中,我们研究了与宽度相当的深度连接的Relu网络的NTK。我们证明NTK性质显着取决于初始化时的深度与宽度比和参数的分布。实际上,我们的结果表明,在Poole等人中确定的超参数空间中这三个阶段的重要性。 (2016年):订购,混乱和混乱的边缘(EOC)。我们在所有三个阶段中都在无限深度和宽度极限中得出NTK分散剂的精确表达式,并得出结论,NTK的可变性在EOC和混乱阶段随着深度而呈指数增长,但在有序阶段中却没有。我们还表明,深网的NTK只能在有序阶段训练期间保持恒定,并讨论NTK矩阵的结构在训练过程中如何变化。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
我们研究了与深神经网络分析有关的随机矩阵产物的奇异值的分布。然而,矩阵类似于样品协方差矩阵的乘积,一个重要的区别是,假定的种群协方差矩阵是非随机或随机的,但独立于统计和随机矩阵理论中的随机数据矩阵,现在是随机数据的某些功能矩阵(深神经网络术语中的突触重量矩阵)。该问题在最近的工作[25,13]中已通过使用自由概率理论的技术。但是,自由概率理论涉及独立于数据矩阵的人口协方差矩阵,因此必须证明其适用性。使用随机矩阵理论的技术版本,对于具有独立条目的高斯数据矩阵,具有独立条目的高斯数据矩阵(一种自由概率的标准分析模型)的理由。在本文中,我们使用另一种更简化的随机矩阵理论技术的版本将[22]的结果推广到突触重量矩阵的条目仅是独立分布的随机变量,均值和有限第四,片刻。特别是,这扩展了所谓的宏观普遍性在被考虑的随机矩阵上的特性。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
了解通过随机梯度下降(SGD)训练的神经网络的特性是深度学习理论的核心。在这项工作中,我们采取了平均场景,并考虑通过SGD培训的双层Relu网络,以实现一个非变量正则化回归问题。我们的主要结果是SGD偏向于简单的解决方案:在收敛时,Relu网络实现输入的分段线性图,以及“结”点的数量 - 即,Relu网络估计器的切线变化的点数 - 在两个连续的训练输入之间最多三个。特别地,随着网络的神经元的数量,通过梯度流的解决方案捕获SGD动力学,并且在收敛时,重量的分布方法接近相关的自由能量的独特最小化器,其具有GIBBS形式。我们的主要技术贡献在于分析了这一最小化器产生的估计器:我们表明其第二阶段在各地消失,除了代表“结”要点的一些特定地点。我们还提供了经验证据,即我们的理论预测的不同可能发生与数据点不同的位置的结。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译