第五世代和第六代无线通信网络正在启用工具,例如物联网设备,无人驾驶汽车(UAV)和人工智能,以使用设备网络来改善农业景观,以自动监视农田。对大面积进行调查需要在特定时间段内执行许多图像分类任务,以防止发生事件发生的情况,例如火灾或洪水。无人机具有有限的能量和计算能力,并且可能无法在本地和适当的时间内执行所有强烈的图像分类任务。因此,假定无人机能够部分将其工作量分开到附近的多访问边缘计算设备。无人机需要一种决策算法,该算法将决定将执行任务的位置,同时还考虑网络中其他无人机的时间限制和能量级别。在本文中,我们介绍了一种深入的Q学习方法(DQL)来解决这个多目标问题。将所提出的方法与Q学习和三个启发式基线进行了比较,模拟结果表明,我们提出的基于DQL的方法在涉及无人机的剩余电池电量和违规截止日期的百分比时可相当。此外,我们的方法能够比Q学习快13倍。
translated by 谷歌翻译
航空基站(ABS)允许智能农场从物联网(IoT)设备的ABS卸载复杂任务的处理责任。 IoT设备的能源和计算资源有限,因此需要为需要ABS支持的系统提供高级解决方案。本文介绍了一种新型的基于多进取的风险敏感的增强学习方法,用于用于智能农业的ABS任务计划。该问题被定义为任务卸载,并在其截止日期之前完成IoT任务的严格条件。此外,该算法还必须考虑ABS的能量能力有限。结果表明,我们提出的方法的表现优于几种启发式方法和经典的Q学习方法。此外,我们提供了混合整数线性编程解决方案,以确定性能的下限,并阐明我们的风险敏感解决方案与最佳解决方案之间的差距。比较证明了我们的广泛仿真结果表明,我们的方法是一种有前途的方法,可以为智能农场中的物联网任务提供保证的任务处理服务,同时增加了该农场中ABS的悬停时间。
translated by 谷歌翻译
The deployment flexibility and maneuverability of Unmanned Aerial Vehicles (UAVs) increased their adoption in various applications, such as wildfire tracking, border monitoring, etc. In many critical applications, UAVs capture images and other sensory data and then send the captured data to remote servers for inference and data processing tasks. However, this approach is not always practical in real-time applications due to the connection instability, limited bandwidth, and end-to-end latency. One promising solution is to divide the inference requests into multiple parts (layers or segments), with each part being executed in a different UAV based on the available resources. Furthermore, some applications require the UAVs to traverse certain areas and capture incidents; thus, planning their paths becomes critical particularly, to reduce the latency of making the collaborative inference process. Specifically, planning the UAVs trajectory can reduce the data transmission latency by communicating with devices in the same proximity while mitigating the transmission interference. This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm while respecting the resource constraints due to the computational load and memory usage of the inference requests. The model is formulated as an optimization problem and aims to minimize latency. The formulated problem is NP-hard so finding the optimal solution is quite complex; thus, this paper introduces a real-time and dynamic solution for online applications using deep reinforcement learning. We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译
With the increasing growth of information through smart devices, increasing the quality level of human life requires various computational paradigms presentation including the Internet of Things, fog, and cloud. Between these three paradigms, the cloud computing paradigm as an emerging technology adds cloud layer services to the edge of the network so that resource allocation operations occur close to the end-user to reduce resource processing time and network traffic overhead. Hence, the resource allocation problem for its providers in terms of presenting a suitable platform, by using computational paradigms is considered a challenge. In general, resource allocation approaches are divided into two methods, including auction-based methods(goal, increase profits for service providers-increase user satisfaction and usability) and optimization-based methods(energy, cost, network exploitation, Runtime, reduction of time delay). In this paper, according to the latest scientific achievements, a comprehensive literature study (CLS) on artificial intelligence methods based on resource allocation optimization without considering auction-based methods in various computing environments are provided such as cloud computing, Vehicular Fog Computing, wireless, IoT, vehicular networks, 5G networks, vehicular cloud architecture,machine-to-machine communication(M2M),Train-to-Train(T2T) communication network, Peer-to-Peer(P2P) network. Since deep learning methods based on artificial intelligence are used as the most important methods in resource allocation problems; Therefore, in this paper, resource allocation approaches based on deep learning are also used in the mentioned computational environments such as deep reinforcement learning, Q-learning technique, reinforcement learning, online learning, and also Classical learning methods such as Bayesian learning, Cummins clustering, Markov decision process.
translated by 谷歌翻译
Recent technological advancements in space, air and ground components have made possible a new network paradigm called "space-air-ground integrated network" (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs. However, due to UAVs' high dynamics and complexity, the real-world deployment of a SAGIN becomes a major barrier for realizing such SAGINs. Compared to the space and terrestrial components, UAVs are expected to meet performance requirements with high flexibility and dynamics using limited resources. Therefore, employing UAVs in various usage scenarios requires well-designed planning in algorithmic approaches. In this paper, we provide a comprehensive review of recent learning-based algorithmic approaches. We consider possible reward functions and discuss the state-of-the-art algorithms for optimizing the reward functions, including Q-learning, deep Q-learning, multi-armed bandit (MAB), particle swarm optimization (PSO) and satisfaction-based learning algorithms. Unlike other survey papers, we focus on the methodological perspective of the optimization problem, which can be applicable to various UAV-assisted missions on a SAGIN using these algorithms. We simulate users and environments according to real-world scenarios and compare the learning-based and PSO-based methods in terms of throughput, load, fairness, computation time, etc. We also implement and evaluate the 2-dimensional (2D) and 3-dimensional (3D) variations of these algorithms to reflect different deployment cases. Our simulation suggests that the $3$D satisfaction-based learning algorithm outperforms the other approaches for various metrics in most cases. We discuss some open challenges at the end and our findings aim to provide design guidelines for algorithm selections while optimizing the deployment of UAV-assisted SAGINs.
translated by 谷歌翻译
无人驾驶飞机(UAV)用作空中基础站,可将时间敏感的包装从物联网设备传递到附近的陆地底站(TBS)。在此类无人产用的物联网网络中安排数据包,以确保TBS在TBS上确保新鲜(或最新的)物联网设备的数据包是一个挑战性的问题,因为它涉及两个同时的步骤(i)(i)在IOT设备上生成的数据包的同时进行样本由UAVS [HOP-1]和(ii)将采样数据包从UAVS更新到TBS [Hop-2]。为了解决这个问题,我们建议针对两跳UAV相关的IoT网络的信息年龄(AOI)调度算法。首先,我们提出了一个低复杂的AOI调度程序,称为MAF-MAD,该计划使用UAV(HOP-1)和最大AOI差异(MAD)策略采样最大AOI(MAF)策略,以更新从无人机到TBS(Hop-2)。我们证明,MAF-MAD是理想条件下的最佳AOI调度程序(无线无线通道和在物联网设备上产生交通生成)。相反,对于一般条件(物联网设备的损失渠道条件和不同的周期性交通生成),提出了深厚的增强学习算法,即近端政策优化(PPO)基于调度程序。仿真结果表明,在所有考虑的一般情况下,建议的基于PPO的调度程序优于MAF-MAD,MAF和Round-Robin等其他调度程序。
translated by 谷歌翻译
雇用无人驾驶航空公司(无人机)吸引了日益增长的兴趣,并成为互联网(物联网)网络中的数据收集技术的最先进技术。在本文中,目的是最大限度地减少UAV-IOT系统的总能耗,我们制定了联合设计了UAV的轨迹和选择IOT网络中的群集头作为受约束的组合优化问题的问题,该问题被归类为NP-努力解决。我们提出了一种新的深度加强学习(DRL),其具有顺序模型策略,可以通过无监督方式有效地学习由UAV的轨迹设计来实现由序列到序列神经网络表示的策略。通过广泛的模拟,所获得的结果表明,与其他基线算法相比,所提出的DRL方法可以找到无人机的轨迹,这些轨迹需要更少的能量消耗,并实现近乎最佳性能。此外,仿真结果表明,我们所提出的DRL算法的训练模型具有出色的概括能力,对更大的问题尺寸而没有必要恢复模型。
translated by 谷歌翻译
无人驾驶飞行器(UAV)是支持各种服务,包括通信的技术突破之一。UAV将在提高无线网络的物理层安全方面发挥关键作用。本文定义了窃听地面用户与UAV之间的链路的问题,该联接器用作空中基站(ABS)。提出了加强学习算法Q - 学习和深Q网络(DQN),用于优化ABS的位置和传输功率,以增强地面用户的数据速率。如果没有系统了解窃听器的位置,这会增加保密容量。与Q-Learnch和基线方法相比,仿真结果显示了拟议DQN的快速收敛性和最高保密能力。
translated by 谷歌翻译
可以部署作为空中基站(UAV-BS)的无人机飞行器,以便在增加网络需求,现有基础设施中的失败点或灾难的情况下为地面设备提供无线连接。然而,考虑到它们的板载电池容量有限,挑战无人机的能量是挑战。先前已经用于提高诸如多个无人机的能量利用的加强学习(RL)方法,然而,假设中央云控制器具有完全了解端设备的位置,即控制器周期性地扫描并发送更新无人机决策。在具有服务接地设备的UAVS的动态网络环境中,此假设在动态网络环境中是不切实际的。为了解决这个问题,我们提出了一种分散的Q学习方法,其中每个UAV-BS都配备了一种自主代理,可以最大化移动地设备的连接,同时提高其能量利用率。实验结果表明,该设计的设计显着优于联合最大化连接地面装置的数量和UAV-BS的能量利用中的集中方法。
translated by 谷歌翻译
在这项工作中,我们优化了基于无人机(UAV)的便携式接入点(PAP)的3D轨迹,该轨迹为一组接地节点(GNS)提供无线服务。此外,根据Peukert效果,我们考虑无人机电池的实用非线性电池放电。因此,我们以一种新颖的方式提出问题,代表了基于公平的能源效率度量的最大化,并被称为公平能源效率(费用)。费用指标定义了一个系统,该系统对每用户服务的公平性和PAP的能源效率都非常重要。该法式问题采用非凸面问题的形式,并具有不可扣除的约束。为了获得解决方案,我们将问题表示为具有连续状态和动作空间的马尔可夫决策过程(MDP)。考虑到解决方案空间的复杂性,我们使用双胞胎延迟的深层确定性政策梯度(TD3)参与者 - 批判性深入强化学习(DRL)框架来学习最大化系统费用的政策。我们进行两种类型的RL培训来展示我们方法的有效性:第一种(离线)方法在整个训练阶段保持GN的位置相同;第二种方法将学习的政策概括为GN的任何安排,通过更改GN的位置,每次培训情节后。数值评估表明,忽视Peukert效应高估了PAP的播放时间,可以通过最佳选择PAP的飞行速度来解决。此外,用户公平,能源效率,因此可以通过有效地将PAP移动到GN上方,从而提高系统的费用价值。因此,我们注意到郊区,城市和茂密的城市环境的基线情景高达88.31%,272.34%和318.13%。
translated by 谷歌翻译
本文调查了大师无人机(MUAV) - 互联网(IOT)网络,我们建议使用配备有智能反射表面(IRS)的可充电辅助UAV(AUAV)来增强来自MUAV的通信信号并将MUAG作为充电电源利用。在拟议的模型下,我们研究了这些能量有限的无人机的最佳协作策略,以最大限度地提高物联网网络的累计吞吐量。根据两个无人机之间是否有收费,配制了两个优化问题。为了解决这些问题,提出了两个多代理深度强化学习(DRL)方法,这些方法是集中培训多师深度确定性政策梯度(CT-MADDPG)和多代理深度确定性政策选项评论仪(MADDPOC)。结果表明,CT-MADDPG可以大大减少对UAV硬件的计算能力的要求,拟议的MADDPOC能够在连续动作域中支持低水平的多代理合作学习,其优于优势基于选项的分层DRL,只支持单代理学习和离散操作。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
尽管深度神经网络(DNN)已成为多个无处不在的应用程序的骨干技术,但它们在资源受限的机器中的部署,例如物联网(IoT)设备,仍然具有挑战性。为了满足这种范式的资源要求,引入了与IoT协同作用的深入推断。但是,DNN网络的分布遭受严重的数据泄漏。已经提出了各种威胁,包括黑盒攻击,恶意参与者可以恢复送入其设备的任意输入。尽管许多对策旨在实现隐私的DNN,但其中大多数会导致额外的计算和较低的准确性。在本文中,我们提出了一种方法,该方法通过重新考虑分配策略而无需牺牲模型性能来针对协作深度推断的安全性。特别是,我们检查了使该模型容易受到黑盒威胁的不同DNN分区,并得出了应分配每个设备的数据量以隐藏原始输入的所有权。我们将这种方法制定为一种优化,在该方法中,我们在共同推导的延迟与数据级别的数据级别之间建立了权衡。接下来,为了放大最佳解决方案,我们将方法塑造为支持异质设备以及多个DNN/数据集的增强学习(RL)设计。
translated by 谷歌翻译
未来几年物联网设备计数的预期增加促使有效算法的开发,可以帮助其有效管理,同时保持功耗低。在本文中,我们提出了一种智能多通道资源分配算法,用于Loradrl的密集Lora网络,并提供详细的性能评估。我们的结果表明,所提出的算法不仅显着提高了Lorawan的分组传递比(PDR),而且还能够支持移动终端设备(EDS),同时确保较低的功耗,因此增加了网络的寿命和容量。}大多数之前作品侧重于提出改进网络容量的不同MAC协议,即Lorawan,传输前的延迟等。我们展示通过使用Loradrl,我们可以通过Aloha \ TextColor {Black}与Lorasim相比,我们可以实现相同的效率LORA-MAB在将复杂性从EDS移动到网关的同时,因此使EDS更简单和更便宜。此外,我们在大规模的频率干扰攻击下测试Loradrl的性能,并显示其对环境变化的适应性。我们表明,与基于学习的技术相比,Loradrl的输出改善了最先进的技术的性能,从而提高了PR的500多种\%。
translated by 谷歌翻译
随着人工智能(AI)的积极发展,基于深神经网络(DNN)的智能应用会改变人们的生活方式和生产效率。但是,从网络边缘生成的大量计算和数据成为主要的瓶颈,传统的基于云的计算模式无法满足实时处理任务的要求。为了解决上述问题,通过将AI模型训练和推理功能嵌入网络边缘,Edge Intelligence(EI)成为AI领域的尖端方向。此外,云,边缘和终端设备之间的协作DNN推断提供了一种有希望的方法来增强EI。然而,目前,以EI为导向的协作DNN推断仍处于早期阶段,缺乏对现有研究工作的系统分类和讨论。因此,我们已经对有关以EI为导向的协作DNN推断的最新研究进行了全面调查。在本文中,我们首先回顾了EI的背景和动机。然后,我们为EI分类了四个典型的DNN推理范例,并分析其特征和关键技术。最后,我们总结了协作DNN推断的当前挑战,讨论未来的发展趋势并提供未来的研究方向。
translated by 谷歌翻译
无人驾驶飞行器(无人机)承诺成为下一代通信的内在部分,因为它们可以部署为提供无线连接到地面用户,以补充现有的地面网络。大多数现有研究使用UAV接入点的蜂窝覆盖率考虑了旋转翼UAV设计(即Quadcopters)。但是,我们预计固定翼的无人机在需要长途飞行时间(例如农村覆盖范围)的情况下更适合连接目的(例如农村覆盖率),因为与旋翼设计。由于固定翼无人机通常无法悬停在适当位置,因此它们的部署优化涉及以允许它们以节能的方式向地面用户提供高质量服务的方式优化其单独的飞行轨迹。在本文中,我们提出了一种多功能深度加强学习方法来优化固定翼UAV蜂窝接入点的能效,同时允许它们向地面用户提供高质量的服务。在我们的分散方法中,每个UAV都配备了Dueling Deep Q-Network(DDQN)代理,可以通过一系列时间步来调整UV的3D轨迹。通过与邻居协调,无人机以优化总系统能效的方式调整各个飞行轨迹。我们基准对我们对一系列启发式轨迹规划策略的方法进行基准,并证明我们的方法可以将系统能效提高到70%。
translated by 谷歌翻译