在许多应用中,河流流速的快速可靠预测在包括洪水风险管理的许多应用中都很重要。浅水方程(SWES)通常用于此目的。然而,SWES的传统数值求解器是计算昂贵的并且需要高分辨率河床型材测量(沐浴浴)。在这项工作中,我们提出了一个两级过程,首先,使用主成分地质统计方法(PCGA)我们估计来自流速测量的浴序的概率密度函数,然后使用机器学习(ML)算法获得用于SWES的快速求解器。快速求解器使用从后浴碱分布的实现,并作为输入的规定范围的BCS。第一阶段允许我们预测流速而不直接测量浴约定。此外,我们将浴约集后部分布增强到更一般的分布,然后将它们作为第二阶段中的ML算法的输入作为输入。这允许求解器将未来的直接浴权测量结合到流速预测中,以提高精度,即使沐浴术与原始间接估计相比随时间变化而变化。我们提出并基准三种不同的求解器,称为PCA-DNN(主成分分析 - 深神经网络),SE(监督编码器)和SVE(监督变分编码器),并在Savannah River,Augusta,GA上验证它们。我们的研究结果表明,快速溶剂能够以良好的准确度预测不同的浴序和BCS的流速,以计算成本明显低于解决传统方法的全边界值问题的成本。
translated by 谷歌翻译
估计河床型材,也称为沐浴型,在许多应用中起着至关重要的作用,例如安全有效的内陆导航,对银行侵蚀,地面沉降和洪水风险管理的预测。直接沐浴术调查的高成本和复杂物流,即深度成像,鼓励使用间接测量,例如表面流速。然而,从间接测量估计高分辨率的沐浴族是可以计算地具有挑战性的逆问题。在这里,我们提出了一种基于阶的模型(ROM)的方法,其利用变形的自动化器(VAE),一系列深神经网络,中间具有窄层,以压缩沐浴族和流速信息并加速沐浴逆问题流速测量。在我们的应用中,浅水方程(SWE)具有适当的边界条件(BCS),例如排出和/或自由表面升高,构成前向问题,以预测流速。然后,通过变分编码器在低维度的非线性歧管上构造SWES的ROM。利用不确定性量化(UQ)的估计在贝叶斯环境中的低维潜空间上执行。我们已经在美国萨凡纳河的一英里接触到美国,测试了我们的反转方法。一旦培训了神经网络(离线阶段),所提出的技术就可以比通常基于线性投影的传统反转方法更快地执行幅度的反转操作级,例如主成分分析(PCA)或主要成分地质统计方法(PCGA)。此外,即使具有稀疏的流速测量,测试也可以估计算法估计良好的精度均匀的浴权。
translated by 谷歌翻译
延时电阻率断层扫描(ERT)是一种流行的地球物理方法,可从电势差测量中估算三维(3D)通透性场。传统的反转和数据同化方法用于将这些数据吸收到水域模型中以估计渗透性。由于不适合性和维度的诅咒,现有的反转策略提供了较差的估计值和3D渗透率场的低分辨率。深度学习的最新进展为我们提供了强大的算法来克服这一挑战。本文提出了一个深度学习(DL)框架,以估算从延时ERT数据中的3D地下渗透性。为了测试所提出的框架的可行性,我们在模拟数据上训练了启用DL的逆模型。基于水域物理学的地下过程模型用于生成此合成数据以进行深度学习分析。结果表明,拟议的弱监督学习可以捕获3D渗透性领域中的显着空间特征。在数量上,在标记的训练,验证和测试数据集的平均平方平方误差(就自然日志而言)小于0.5。 R2评分(全局度量)大于0.75,每个单元格(本地度量)的百分比误差小于10%。最后,在计算成本方面的额外好处是,所提出的基于DL的反向模型至少比运行正向模型快的速度(104)倍。请注意,传统倒置可能需要多个前向模型模拟(例如,按10到1000的顺序),这非常昂贵。这种计算节省(O(105)-O(107))使提出的基于DL的逆模型具有对地下成像和实时ERT监视应用程序的吸引力,这是由于快速而相当准确的渗透性场估计。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译
计算流体动力学(CFD)可用于模拟血管血流动力学并分析潜在的治疗方案。 CFD已显示对改善患者预后有益。但是,尚未实现CFD的实施CFD。 CFD的障碍包括高计算资源,设计模拟设置所需的专业经验以及较长的处理时间。这项研究的目的是探索使用机器学习(ML)以自动和快速回归模型复制常规主动脉CFD。用于训练/测试的数据该模型由在合成生成的3D主动脉形状上执行的3,000个CFD模拟组成。这些受试者是由基于实际患者特异性主动脉(n = 67)的统计形状模型(SSM)生成的。对200个测试形状进行的推理导致压力和速度的平均误差分别为6.01%+/- 3.12 SD和3.99%+/- 0.93 SD。我们的基于ML的模型在〜0.075秒内执行CFD(比求解器快4,000倍)。这项研究表明,可以使用ML以更快的速度,自动过程和高精度来复制常规血管CFD的结果。
translated by 谷歌翻译
我们使用高斯随机重量平均(赃物)来评估与基于神经网络的功能近似相关的模型不确定性与流体流有关。赃物在给定训练数据和恒定学习率的情况下近似每个重量的后高斯分布。有了访问此分布,它能够创建具有各种采样权重组合的多个模型,可用于获得集合预测。这种合奏的平均值可以视为“平均估计”,而其标准偏差则可以用于构建“置信区间”,这使我们能够在神经网络的训练过程中执行不确定性定量(UQ)。我们在以下情况下利用代表性的基于神经网络的功能近似任务:(i)二维圆形缸唤醒; (ii)Daymet数据集(北美的最高每日温度); (iii)三维方缸唤醒; (iv)城市流程,以评估当前思想在各种复杂数据集中的普遍性。无论网络体系结构如何,都可以应用基于赃物的UQ,因此,我们证明了该方法对两种类型的神经网络的适用性:(i)通过结合卷积神经网络(CNN)和Multi-i-Encompruction。图层感知器(MLP); (ii)来自具有二维CNN的截面数据的远场状态估计。我们发现,赃物可以从模型形式不确定性的角度获得物理上介入的置信区间估计。该能力支持其用于科学和工程方面的各种问题。
translated by 谷歌翻译
求解电磁逆散射问题(ISP)由于内在的非线性,呈不良和昂贵的计算成本,挑战。最近,深神经网络(DNN)技术已经成功地应用于ISP上,并在传统方法上示出了优异成像的电位。在本文中,我们分析了DNN溶剂和传统迭代算法之间的类比,并讨论了在训练过程中不能有效地纳入重要的物理现象。我们展示了在DNN的学习过程中包括近端前瞻的重要性。为此,我们提出了新的损耗功能设计,其包括基于多散射的近场数量(例如散射场或感兴趣领域内的诱导电流)。使用各种数值实验研究了物理引导功能的影响。总结了调查的ISP求解器的利弊,综述了不同损失功能。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译
风电场设计主要取决于风力涡轮机唤醒流向大气风条件的可变性,以及唤醒之间的相互作用。使用高保真度捕获唤醒流场的物理学模型是计算风电场的布局优化的计算非常昂贵,因此数据驱动的减少的订单模型可以代表模拟风电场的有效替代方案。在这项工作中,我们使用现实世界的光检测和测量(LIDAR)测量的风力涡轮机唤醒,用机器学习构建预测代理模型。具体而言,我们首先展示使用深度自动控制器来找到低维\ emph {潜在}空间,其给出了唤醒激光雷达测量的计算易逼近的近似。然后,我们学习使用深神经网络的参数空间和(潜在空间)唤醒流场之间的映射。此外,我们还展示了使用概率机器学习技术,即高斯过程建模,除了数据中的认知和炼拉内不确定性之外,学习参数空间潜空间映射。最后,为了应对培训大型数据集,我们展示了使用变分高斯过程模型,为大型数据集提供了传统的高斯工艺模型的传统高斯工艺模型。此外,我们介绍了主动学习以自适应地构建和改进传统的高斯过程模型预测能力。总的来说,我们发现我们的方法提供了风力涡轮机唤醒流场的准确近似,其可以以比具有基于高保真物理的模拟产生的级别更便宜的成本来查询。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译
在这项工作中,我们介绍,证明并展示了纠正源期限方法(Costa) - 一种新的混合分析和建模(火腿)的新方法。 HAM的目标是将基于物理的建模(PBM)和数据驱动的建模(DDM)组合,以创建概括,值得信赖,准确,计算高效和自我不断发展的模型。 Costa通过使用深神经网络产生的纠正源期限增强PBM模型的控制方程来实现这一目标。在一系列关于一维热扩散的数值实验中,发现CostA在精度方面优于相当的DDM和PBM模型 - 通常通过几个数量级降低预测误差 - 同时也比纯DDM更好地概括。由于其灵活而稳定的理论基础,Costa提供了一种模块化框架,用于利用PBM和DDM中的新颖开发。其理论基础还确保了哥斯达队可以用来模拟由(确定性)部分微分方程所控制的任何系统。此外,Costa有助于在PBM的背景下解释DNN生成的源术语,这导致DNN的解释性改善。这些因素使哥斯达成为数据驱动技术的潜在门开启者,以进入先前为纯PBM保留的高赌注应用。
translated by 谷歌翻译
识别异质电导率场并重建污染物释放历史是地下修复的关键方面。通过有限和嘈杂的液压头和集中度测量实现这两个目标是具有挑战性的。这些障碍包括解决高维参数的反问题,以及重复前进建模所需的高计算成本。我们使用卷积对抗自动编码器(CAAE)进行异质非高斯电导率场的参数化,并具有低维的潜在表示。此外,我们训练了三维密集的卷积编码器(密集)网络,以作为流和运输过程的正向替代。结合了CAAE和密度向前的替代模型,使用多个数据同化(ESMDA)算法的整体更平滑,用于从未知参数的贝叶斯后分布中进行采样,形成CAAE密集的ESMDA反转框架。我们在三维污染物源和电导率域识别问题中应用了这种CAAE密集的ESMDA反转框架。提供了CAAE-ESMDA与物理流和运输模拟器和CAAE密度浓度ESMDA的反转结果的比较,这表明以更高的计算效率实现了准确的重建结果。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
本文介绍了频率卷积神经网络(CNN),用于快速,无创的​​2D剪切波速度(VS)成像的近表面地质材料。在频速度域中运行,可以在用于生成CNN输入的线性阵列,主动源实验测试配置中具有显着的灵活性,这些配置是归一化的分散图像。与波场图像不同,标准化的分散图像对实验测试配置相对不敏感,可容纳各种源类型,源偏移,接收器数量和接收器间距。我们通过将其应用于经典的近乎表面地球物理学问题,即成像两层,起伏的土壤 - 旁质界面的界面来证明频率CNN的有效性。最近,通过开发一个时间距离CNN来研究这个问题,该问题表现出了很大的希望,但在使用不同的现场测试配置方面缺乏灵活性。本文中,新的频道CNN显示出与时距CNN的可比精度,同时提供了更大的灵活性来处理各种现场应用程序。使用100,000个合成近表面模型对频率速度CNN进行了训练,验证和测试。首先,使用训练集的合成近表面模型测试了提议的频率CNN跨各种采集配置概括跨各种采集配置的能力,然后应用于在Austin的Hornsby Bend在Austin的Hornsby Bend收集的实验场数据美国德克萨斯州,美国。当针对更广泛的地质条件范围充分开发时,提出的CNN最终可以用作当前伪2D表面波成像技术的快速,端到端替代方案,或开发用于完整波形倒置的启动模型。
translated by 谷歌翻译
逆问题本质上是普遍存在的,几乎在科学和工程的几乎所有领域都出现,从地球物理学和气候科学到天体物理学和生物力学。解决反问题的核心挑战之一是解决他们的不良天性。贝叶斯推论提供了一种原则性的方法来克服这一方法,通过将逆问题提出为统计框架。但是,当推断具有大幅度的离散表示的字段(所谓的“维度的诅咒”)和/或仅以先前获取的解决方案的形式可用时。在这项工作中,我们提出了一种新的方法,可以使用深层生成模型进行有效,准确的贝叶斯反转。具体而言,我们证明了如何使用生成对抗网络(GAN)在贝叶斯更新中学到的近似分布,并在GAN的低维度潜在空间中重新解决所得的推断问题,从而有效地解决了大规模的解决方案。贝叶斯逆问题。我们的统计框架保留了潜在的物理学,并且被证明可以通过可靠的不确定性估计得出准确的结果,即使没有有关基础噪声模型的信息,这对于许多现有方法来说都是一个重大挑战。我们证明了提出方法对各种反问题的有效性,包括合成和实验观察到的数据。
translated by 谷歌翻译
在地质不确定性下,快速同化监测数据以更新压力累积和压力累积和二氧化碳(CO2)羽流迁移的预测是地质碳储存中的一个具有挑战性的问题。具有高维参数空间的数据同化的高计算成本阻碍了商业规模库管理的快速决策。我们建议利用具有深度学习技术的多孔介质流动行为的物理理解,以开发快速历史匹配 - 水库响应预测工作流程。应用集合更顺畅的多数据同化框架,工作流程更新地质特性,并通过通过地震反转解释的压力历史和二氧化碳羽毛的量化不确定性来预测水库性能。由于这种工作流程中最具计算昂贵的组件是储层模拟,我们开发了代理模型,以在多孔注射下预测动态压力和CO2羽流量。代理模型采用深度卷积神经网络,具体地,宽的剩余网络和残留的U-Net。该工作流程针对代表碎屑货架沉积环境的扁平三维储层模型验证。智能处理应用于真正的3D储层模型中数量与单层储层模型之间的桥梁。工作流程可以在主流个人工作站上不到一小时内完成历史匹配和储库预测,在不到一小时内。
translated by 谷歌翻译
主动脉(COA)患者特异性计算流体动力学(CFD)研究的目的 - 在资源约束设置中的研究受到可用成像方式和速度数据采集的可用成像方式的限制。多普勒超声心动图被视为合适的速度获取方式,因为其可用性和安全性较高。这项研究旨在调查经典机器学习(ML)方法的应用,以创建一种适当且可靠的方法,用于从多普勒超声心动图图像中获得边界条件(BCS),用于使用CFD进行血液动力学建模。方法 - 我们提出的方法结合了ML和CFD,以模拟感兴趣区域内的血流动力学流动。该方法的关键特征是使用ML模型来校准CFD模型的入口和出口边界条件(BCS)。 ML模型的关键输入变量是患者心率,因为这是研究中测得的血管的时间变化的参数。在研究的CFD组件中使用ANSYS Fluent,而Scikit-Learn Python库则用于ML分量。结果 - 我们在干预前对严重COA的真实临床案例进行了验证。将我们的模拟的最大缩回速度与从研究中使用的几何形状获得的患者获得的测量最大骨质速度进行了比较。在用于获得BCS的5 mL模型中,顶部模型在测得的最大骨质速度的5 \%之内。结论 - 该框架表明,它能够考虑在测量之间考虑患者心率的变化。因此,当在每个血管上缩放心率时,可以在生理上逼真的BC计算,同时提供合理准确的溶液。
translated by 谷歌翻译