识别异质电导率场并重建污染物释放历史是地下修复的关键方面。通过有限和嘈杂的液压头和集中度测量实现这两个目标是具有挑战性的。这些障碍包括解决高维参数的反问题,以及重复前进建模所需的高计算成本。我们使用卷积对抗自动编码器(CAAE)进行异质非高斯电导率场的参数化,并具有低维的潜在表示。此外,我们训练了三维密集的卷积编码器(密集)网络,以作为流和运输过程的正向替代。结合了CAAE和密度向前的替代模型,使用多个数据同化(ESMDA)算法的整体更平滑,用于从未知参数的贝叶斯后分布中进行采样,形成CAAE密集的ESMDA反转框架。我们在三维污染物源和电导率域识别问题中应用了这种CAAE密集的ESMDA反转框架。提供了CAAE-ESMDA与物理流和运输模拟器和CAAE密度浓度ESMDA的反转结果的比较,这表明以更高的计算效率实现了准确的重建结果。
translated by 谷歌翻译
在地质不确定性下,快速同化监测数据以更新压力累积和压力累积和二氧化碳(CO2)羽流迁移的预测是地质碳储存中的一个具有挑战性的问题。具有高维参数空间的数据同化的高计算成本阻碍了商业规模库管理的快速决策。我们建议利用具有深度学习技术的多孔介质流动行为的物理理解,以开发快速历史匹配 - 水库响应预测工作流程。应用集合更顺畅的多数据同化框架,工作流程更新地质特性,并通过通过地震反转解释的压力历史和二氧化碳羽毛的量化不确定性来预测水库性能。由于这种工作流程中最具计算昂贵的组件是储层模拟,我们开发了代理模型,以在多孔注射下预测动态压力和CO2羽流量。代理模型采用深度卷积神经网络,具体地,宽的剩余网络和残留的U-Net。该工作流程针对代表碎屑货架沉积环境的扁平三维储层模型验证。智能处理应用于真正的3D储层模型中数量与单层储层模型之间的桥梁。工作流程可以在主流个人工作站上不到一小时内完成历史匹配和储库预测,在不到一小时内。
translated by 谷歌翻译
我们构建具有多个垂直产生井的动态3D地下单相流动问题的代理模型。替代模型在给定随机渗透性场,任意井位置和穿透长度以及作为输入的时间戳矩阵的任何时间,提供了整个形成的有效压力估计。然后可以基于Peaceman的公式确定井生产速率或底部孔压力。使用卷积编码器解码器神经网络架构将原始代理建模任务转换为图像到图像回归问题。以其离散形式的控制流程方程的残余纳入损失函数,以施加模型训练过程的理论指导。结果,与完全数据驱动的模型相比,培训的代理模型的准确性和泛化能力显着提高。它们也显示出具有不同统计数据的渗透性场具有灵活的外推能力。代理模型用于考虑随机渗透性场的不确定性量化,以及基于有限的井生产数据和地层性能观察数据推断未知的渗透信息。结果显示与传统的数值模拟工具有关,但计算效率大大提高。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
逆问题本质上是普遍存在的,几乎在科学和工程的几乎所有领域都出现,从地球物理学和气候科学到天体物理学和生物力学。解决反问题的核心挑战之一是解决他们的不良天性。贝叶斯推论提供了一种原则性的方法来克服这一方法,通过将逆问题提出为统计框架。但是,当推断具有大幅度的离散表示的字段(所谓的“维度的诅咒”)和/或仅以先前获取的解决方案的形式可用时。在这项工作中,我们提出了一种新的方法,可以使用深层生成模型进行有效,准确的贝叶斯反转。具体而言,我们证明了如何使用生成对抗网络(GAN)在贝叶斯更新中学到的近似分布,并在GAN的低维度潜在空间中重新解决所得的推断问题,从而有效地解决了大规模的解决方案。贝叶斯逆问题。我们的统计框架保留了潜在的物理学,并且被证明可以通过可靠的不确定性估计得出准确的结果,即使没有有关基础噪声模型的信息,这对于许多现有方法来说都是一个重大挑战。我们证明了提出方法对各种反问题的有效性,包括合成和实验观察到的数据。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
估计河床型材,也称为沐浴型,在许多应用中起着至关重要的作用,例如安全有效的内陆导航,对银行侵蚀,地面沉降和洪水风险管理的预测。直接沐浴术调查的高成本和复杂物流,即深度成像,鼓励使用间接测量,例如表面流速。然而,从间接测量估计高分辨率的沐浴族是可以计算地具有挑战性的逆问题。在这里,我们提出了一种基于阶的模型(ROM)的方法,其利用变形的自动化器(VAE),一系列深神经网络,中间具有窄层,以压缩沐浴族和流速信息并加速沐浴逆问题流速测量。在我们的应用中,浅水方程(SWE)具有适当的边界条件(BCS),例如排出和/或自由表面升高,构成前向问题,以预测流速。然后,通过变分编码器在低维度的非线性歧管上构造SWES的ROM。利用不确定性量化(UQ)的估计在贝叶斯环境中的低维潜空间上执行。我们已经在美国萨凡纳河的一英里接触到美国,测试了我们的反转方法。一旦培训了神经网络(离线阶段),所提出的技术就可以比通常基于线性投影的传统反转方法更快地执行幅度的反转操作级,例如主成分分析(PCA)或主要成分地质统计方法(PCGA)。此外,即使具有稀疏的流速测量,测试也可以估计算法估计良好的精度均匀的浴权。
translated by 谷歌翻译
相位场建模是一种有效但计算昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税流程的成本,例如在材料的优化和设计中。尖锐相边界的存在所产生的物理现象的固有不连续性使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)集成在一起,以了解两相混合物的动态演化,并加速预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于编码固定数量的传感器位置(分支网)的输入函数,另一个用于编码输出功能的位置(TRUNK NET),了解微观结构Evolution的中尺度动力学从自动编码器潜在空间。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
This paper presents a surrogate modelling technique based on domain partitioning for Bayesian parameter inference of highly nonlinear engineering models. In order to alleviate the computational burden typically involved in Bayesian inference applications, a multielement Polynomial Chaos Expansion based Kriging metamodel is proposed. The developed surrogate model combines in a piecewise function an array of local Polynomial Chaos based Kriging metamodels constructed on a finite set of non-overlapping subdomains of the stochastic input space. Therewith, the presence of non-smoothness in the response of the forward model (e.g.~ nonlinearities and sparseness) can be reproduced by the proposed metamodel with minimum computational costs owing to its local adaptation capabilities. The model parameter inference is conducted through a Markov chain Monte Carlo approach comprising adaptive exploration and delayed rejection. The efficiency and accuracy of the proposed approach are validated through two case studies, including an analytical benchmark and a numerical case study. The latter relates the partial differential equation governing the hydrogen diffusion phenomenon of metallic materials in Thermal Desorption Spectroscopy tests.
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
出现集合随机滤清器(ERFF)作为逆建模的替代品的替代卡尔曼滤波器(ENKF)。 ENKF是一种数据同化方法,随着观察结果的收集,可以依次依次估算参数估计参数。更新步骤是基于从实现集合中计算出的实验协方差,并将更新作为线性组合,是观测值和预测的系统状态值之间差异的线性组合。 ERFF用随机森林表示的非线性函数代替更新步骤中的线性组合。这样,可以捕获要更新的参数与观察值之间的非线性关系,并产生更好的更新。在许多方案中,有不同程度的异质性(对数电导率变异从1到6.25(ln m/d)2),在许多方案中,证明了ERFF的对数指导性识别的目的。合奏(50或100),以及打击头观测的数量(18或36)。在所有情况下,ERFF效果很好,能够重建对数传导性空间异质性,同时匹配所选控制点处观察到的压电头。为了进行基准测试,将ERFF与重新启动ENKF进行了比较,以发现ERFF在使用的集合实现的数量(在典型的ENKF应用中很小)中优于ENKF。只有当实现的数量增加到500时,重新启动ENKF才能匹配ERFF的性能,尽管计算成本三倍。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
我们使用高斯随机重量平均(赃物)来评估与基于神经网络的功能近似相关的模型不确定性与流体流有关。赃物在给定训练数据和恒定学习率的情况下近似每个重量的后高斯分布。有了访问此分布,它能够创建具有各种采样权重组合的多个模型,可用于获得集合预测。这种合奏的平均值可以视为“平均估计”,而其标准偏差则可以用于构建“置信区间”,这使我们能够在神经网络的训练过程中执行不确定性定量(UQ)。我们在以下情况下利用代表性的基于神经网络的功能近似任务:(i)二维圆形缸唤醒; (ii)Daymet数据集(北美的最高每日温度); (iii)三维方缸唤醒; (iv)城市流程,以评估当前思想在各种复杂数据集中的普遍性。无论网络体系结构如何,都可以应用基于赃物的UQ,因此,我们证明了该方法对两种类型的神经网络的适用性:(i)通过结合卷积神经网络(CNN)和Multi-i-Encompruction。图层感知器(MLP); (ii)来自具有二维CNN的截面数据的远场状态估计。我们发现,赃物可以从模型形式不确定性的角度获得物理上介入的置信区间估计。该能力支持其用于科学和工程方面的各种问题。
translated by 谷歌翻译
助焊剂反转是通过气体摩尔分数的观察来鉴定气体的源和沉积的过程。倒置通常涉及运行拉格朗日粒子分散模型(LPDM),以在感兴趣的空间领域之间产生观察结果和助熔剂之间的敏感性。 LPDM必须及时向后运行,以便每个气体测量,这可以计算地禁止。为了解决这个问题,在这里,我们开发了一种新的时空仿真器,用于使用卷积变分Autiachoder(CVAE)构建的LPDM敏感性。利用CVAE的编码器段,我们获得低维空间中的潜在变量的近似(变分)后分布。然后,我们在低维空间上使用时空高斯工艺仿真器在预测位置和时间点上模拟新变量。然后通过CVAE的解码器段来通过模拟变量以产生模拟的敏感性。我们表明,基于CVAE的仿真器优于使用经验正交功能的更传统的仿真器,并且它可以与不同的LPDM一起使用。我们得出结论,我们的仿真基方法可用于可靠地减少生成LPDM输出所需的计算时间,以便在高分辨率通量反转中使用。
translated by 谷歌翻译
社会和自然中的极端事件,例如大流行尖峰,流氓波浪或结构性失败,可能会带来灾难性的后果。极端的表征很困难,因为它们很少出现,这似乎是由良性的条件引起的,并且属于复杂且通常是未知的无限维系统。这种挑战使他们将其描述为“毫无意义”。我们通过将贝叶斯实验设计(BED)中的新型训练方案与深神经操作员(DNOS)合奏结合在一起来解决这些困难。这个模型不足的框架配对了一个床方案,该床方案积极选择数据以用近似于无限二二维非线性运算符的DNO集合来量化极端事件。我们发现,这个框架不仅清楚地击败了高斯流程(GPS),而且只有两个成员的浅色合奏表现最好; 2)无论初始数据的状态如何(即有或没有极端),都会发现极端; 3)我们的方法消除了“双研究”现象; 4)与逐步全球Optima相比,使用次优的采集点的使用不会阻碍床的性能; 5)蒙特卡洛的获取优于高量级的标准优化器。这些结论共同构成了AI辅助实验基础设施的基础,该基础设施可以有效地推断并查明从物理到社会系统的许多领域的关键情况。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
近年来,机器学习领域在追求模拟实际数据生成过程方面取得了现象。这种成功的一个值示例是变形AutoEncoder(VAE)。在这项工作中,通过透视的较小,我们利用和调整VAES以进行不同的目的:科学反向问题的不确定性量化。我们介绍了UQ-VAE:一种灵活,自适应,混合数据/模型通知的框架,用于培训能够快速建模代表感兴趣的未知参数的后部分布的神经网络。具体地,从基于分解的变分推断,我们的框架被导出,使得通常存在于科学逆问题中的大多数信息在训练过程中充分利用。此外,该框架包括可调节的超参数,允许选择后模型与目标分布之间的距离概念。这引入了控制优化如何指导后模型的学习的灵活性。此外,该框架具有固有的自适应优化属性,通过学习后部不确定性出现。
translated by 谷歌翻译
在这项工作中,我们已经提出了一种称为VAE-Krnet的生成模型,用于密度估计或近似,其将规范变形Autiachoder(VAE)与我们最近开发的基于流的生成模型相结合,称为Krnet。 VAE用作尺寸减少技术以捕获潜伏空间,并且Krnet用于模拟潜在变量的分布。在数据和潜在变量之间使用线性模型,我们表明VAE-Krnet可以比规范VAE更有效且鲁棒。 VAE-KRNET可以用作密度模型,以近似数据分布或任意概率密度函数(PDF)已知到常数。 VAE-KRNET在维度方面灵活。当尺寸的数量相对较小时,Krnet可以有效地近似于原始随机变量的分布。对于高维病例,我们可以使用VAE-Krnet合并尺寸减少。 VAE-Krnet的一个重要应用是用于后部分布的近似的变分贝叶。变分贝叶斯方法通常基于模型和后部之间的Kullback-Leibler(KL)发散的最小化。对于高尺寸分布,由于维度的诅咒构建精确的密度模型是非常具有挑战性的,其中通常引入额外的假设以效率。例如,经典平均场方法假设尺寸之间的相互独立性,这通常会导致由于过度简化而产生低估的方差。为了减轻这个问题,我们包括丢失潜在随机变量和原始随机变量之间的相互信息的最大化,这有助于从低密度的区域保持更多信息,使得方差估计得到改善。
translated by 谷歌翻译
线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,兴趣在于使用对系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展,如何使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短的GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度尺度)的点估计值。
translated by 谷歌翻译