冷冻电子显微镜(Cryo-EM)已成为确定蛋白质结构,尤其是近年来大型蛋白质复合物和组件的结构的关键技术。Cryo-EM数据分析中的一个关键挑战是从冷冻EM密度图中自动重建精确的蛋白质结构。在这篇综述中,我们简要概述了从冷冻EM密度图构建蛋白质结构的各种深度学习方法,分析其影响,并讨论准备高质量数据集以培训深度学习模型的挑战。展望未来,需要开发更先进的深度学习模型,以有效地将冷冻EM数据与其他互补数据(例如蛋白质序列和Alphafold预测的结构)相结合,以进一步推进该领域。
translated by 谷歌翻译
蛋白质RNA相互作用对各种细胞活性至关重要。已经开发出实验和计算技术来研究相互作用。由于先前数据库的限制,尤其是缺乏蛋白质结构数据,大多数现有的计算方法严重依赖于序列数据,只有一小部分使用结构信息。最近,alphafold彻底改变了整个蛋白质和生物领域。可预应学,在即将到来的年份,也将显着促进蛋白质-RNA相互作用预测。在这项工作中,我们对该字段进行了彻底的审查,调查绑定站点和绑定偏好预测问题,并覆盖常用的数据集,功能和模型。我们还指出了这一领域的潜在挑战和机遇。本调查总结了过去的RBP-RNA互动领域的发展,并预见到了alphafold时代未来的发展。
translated by 谷歌翻译
Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, $\textit{e.g.}$, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules $\textit{de novo}$. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a $\textit{renaissance}$ in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.
translated by 谷歌翻译
The prediction of protein structures from sequences is an important task for function prediction, drug design, and related biological processes understanding. Recent advances have proved the power of language models (LMs) in processing the protein sequence databases, which inherit the advantages of attention networks and capture useful information in learning representations for proteins. The past two years have witnessed remarkable success in tertiary protein structure prediction (PSP), including evolution-based and single-sequence-based PSP. It seems that instead of using energy-based models and sampling procedures, protein language model (pLM)-based pipelines have emerged as mainstream paradigms in PSP. Despite the fruitful progress, the PSP community needs a systematic and up-to-date survey to help bridge the gap between LMs in the natural language processing (NLP) and PSP domains and introduce their methodologies, advancements and practical applications. To this end, in this paper, we first introduce the similarities between protein and human languages that allow LMs extended to pLMs, and applied to protein databases. Then, we systematically review recent advances in LMs and pLMs from the perspectives of network architectures, pre-training strategies, applications, and commonly-used protein databases. Next, different types of methods for PSP are discussed, particularly how the pLM-based architectures function in the process of protein folding. Finally, we identify challenges faced by the PSP community and foresee promising research directions along with the advances of pLMs. This survey aims to be a hands-on guide for researchers to understand PSP methods, develop pLMs and tackle challenging problems in this field for practical purposes.
translated by 谷歌翻译
Proteins are fundamental biological entities that play a key role in life activities. The amino acid sequences of proteins can be folded into stable 3D structures in the real physicochemical world, forming a special kind of sequence-structure data. With the development of Artificial Intelligence (AI) techniques, Protein Representation Learning (PRL) has recently emerged as a promising research topic for extracting informative knowledge from massive protein sequences or structures. To pave the way for AI researchers with little bioinformatics background, we present a timely and comprehensive review of PRL formulations and existing PRL methods from the perspective of model architectures, pretext tasks, and downstream applications. We first briefly introduce the motivations for protein representation learning and formulate it in a general and unified framework. Next, we divide existing PRL methods into three main categories: sequence-based, structure-based, and sequence-structure co-modeling. Finally, we discuss some technical challenges and potential directions for improving protein representation learning. The latest advances in PRL methods are summarized in a GitHub repository https://github.com/LirongWu/awesome-protein-representation-learning.
translated by 谷歌翻译
在三维分子结构上运行的计算方法有可能解决生物学和化学的重要问题。特别地,深度神经网络的重视,但它们在生物分子结构域中的广泛采用受到缺乏系统性能基准或统一工具包的限制,用于与分子数据相互作用。为了解决这个问题,我们呈现Atom3D,这是一个新颖的和现有的基准数据集的集合,跨越几个密钥的生物分子。我们为这些任务中的每一个实施多种三维分子学习方法,并表明它们始终如一地提高了基于单维和二维表示的方法的性能。结构的具体选择对于性能至关重要,具有涉及复杂几何形状的任务的三维卷积网络,在需要详细位置信息的系统中表现出良好的图形网络,以及最近开发的设备越多的网络显示出显着承诺。我们的结果表明,许多分子问题符合三维分子学习的增益,并且有可能改善许多仍然过分曝光的任务。为了降低进入并促进现场进一步发展的障碍,我们还提供了一套全面的DataSet处理,模型培训和在我们的开源ATOM3D Python包中的评估工具套件。所有数据集都可以从https://www.atom3d.ai下载。
translated by 谷歌翻译
用于预测蛋白质之间的界面触点的计算方法对于药物发现,因此可以显着地推进替代方法的准确性,例如蛋白质 - 蛋白质对接,蛋白质功能分析工具和其他用于蛋白质生物信息学的计算方法。在这项工作中,我们介绍了几何变压器,一种用于旋转的新型几何不变性的曲线图变压器,用于旋转和平移 - 不变的蛋白质接口接触预测,包装在膨胀的端到端预测管道内。 Deepinteract预测伴侣特异性蛋白质界面触点(即,蛋白质残留物 - 残留物接触)给出了两种蛋白质的3D三级结构作为输入。在严格的基准测试中,深入的蛋白质复杂目标来自第13和第14次CASP-CAPRI实验以及对接基准5,实现14%和1.1%顶部L / 5精度(L:蛋白质单位的长度) , 分别。在这样做的情况下,使用几何变压器作为其基于图形的骨干,除了与深度兼容的其他图形的神经网络骨架之外,还优于接口接触预测的现有方法,从而验证了几何变压器学习丰富关系的有效性用于3D蛋白质结构下游任务的-Geometric特征。
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
Geometric deep learning has recently achieved great success in non-Euclidean domains, and learning on 3D structures of large biomolecules is emerging as a distinct research area. However, its efficacy is largely constrained due to the limited quantity of structural data. Meanwhile, protein language models trained on substantial 1D sequences have shown burgeoning capabilities with scale in a broad range of applications. Nevertheless, no preceding studies consider combining these different protein modalities to promote the representation power of geometric neural networks. To address this gap, we make the foremost step to integrate the knowledge learned by well-trained protein language models into several state-of-the-art geometric networks. Experiments are evaluated on a variety of protein representation learning benchmarks, including protein-protein interface prediction, model quality assessment, protein-protein rigid-body docking, and binding affinity prediction, leading to an overall improvement of 20% over baselines and the new state-of-the-art performance. Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin and can be generalized to complex tasks.
translated by 谷歌翻译
基于合并和处理对称信息的神经网络架构的几何深度学习(GDL)已经成为人工智能最近的范式。GDL在分子建模应用中具有特定的承诺,其中存在具有不同对称性和抽象水平的各种分子表示。本综述提供了分子GDL的结构化和协调概述,突出了其在药物发现,化学合成预测和量子化学中的应用。重点是学习的分子特征的相关性及其对成熟的分子描述符的互补性。本综述概述了当前的挑战和机会,并提出了用于分子科学GDL的未来的预测。
translated by 谷歌翻译
Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, as well as a low number of new drugs that are approved each year. To solve these problems, new and innovate technologies are needed that make the drug discovery process of small-molecules more time and cost-efficient, and which allow to target previously undruggable target classes such as protein-protein interactions. Structure-based virtual screenings have become a leading contender in this context. In this review, we give an introduction to the foundations of structure-based virtual screenings, and survey their progress in the past few years. We outline key principles, recent success stories, new methods, available software, and promising future research directions. Virtual screenings have an enormous potential for the development of new small-molecule drugs, and are already starting to transform early-stage drug discovery.
translated by 谷歌翻译
计算抗体设计旨在自动创建与抗原结合的抗体。结合亲和力受3D结合界面的控制,其中抗体残基(角膜膜)与抗原残基(表位)紧密相互作用。因此,预测3D副观察复合物(对接)是找到最佳寄生虫的关键。在本文中,我们提出了一个新模型,称为层状码头和设计的名为层次层次的改进网络(HERN)。在对接过程中,Hern采用层次消息传递网络来预测原子力,并利用它们以迭代性,模棱两可的方式来完善结合复合物。在生成期间,其自动回解码器逐渐扩展了寄生虫,并构建了绑定界面的几何表示,以指导下一个残基选择。我们的结果表明,HERN在伞形对接和设计基准测试方面的先验最先进。
translated by 谷歌翻译
RNA结构的确定和预测可以促进靶向RNA的药物开发和可用的共性元素设计。但是,由于RNA的固有结构灵活性,所有三种主流结构测定方法(X射线晶体学,NMR和Cryo-EM)在解决RNA结构时会遇到挑战,这导致已解决的RNA结构的稀缺性。计算预测方法作为实验技术的补充。但是,\ textit {de从头}的方法都不基于深度学习,因为可用的结构太少。取而代之的是,他们中的大多数采用了耗时的采样策略,而且它们的性能似乎达到了高原。在这项工作中,我们开发了第一种端到端的深度学习方法E2FOLD-3D,以准确执行\ textit {de de novo} RNA结构预测。提出了几个新的组件来克服数据稀缺性,例如完全不同的端到端管道,二级结构辅助自我鉴定和参数有效的骨干配方。此类设计在独立的,非重叠的RNA拼图测试数据集上进行了验证,并达到平均sub-4 \ aa {}根平方偏差,与最先进的方法相比,它表现出了优越的性能。有趣的是,它在预测RNA复杂结构时也可以取得令人鼓舞的结果,这是先前系统无法完成的壮举。当E2FOLD-3D与实验技术耦合时,RNA结构预测场可以大大提高。
translated by 谷歌翻译
蛋白质功能预测的最新进展利用了基于图的深度学习方法,以将蛋白质的结构和拓扑特征与其分子功能相关联。然而,体内蛋白质不是静态的,而是为功能目的改变构象的动态分子。在这里,我们通过在动态相关的残基对之间连接边缘,将正常模式分析应用于天然蛋白质构象和增强蛋白图。在Multilabel函数分类任务中,我们的方法基于此动态信息表示,演示了出色的性能增益。提出的图形神经网络(Prodar)提高了残基级注释的可解释性和普遍性,并鲁棒反映了蛋白质中的结构细微差别。我们通过比较HMTH1,硝基酚蛋白和SARS-COV-2受体结合结构域的类激活图来阐明图表中动态信息的重要性。我们的模型成功地学习了蛋白质的动态指纹,并指出了功能影响的残基,具有广泛的生物技术和药物应用的巨大潜力。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
translated by 谷歌翻译
预测药物目标相互作用是药物发现的关键。最近基于深度学习的方法显示出令人鼓舞的表现,但仍有两个挑战:(i)如何明确建模并学习药物与目标之间的局部互动,以更好地预测和解释; (ii)如何从不同分布的新型药物目标对上概括预测性能。在这项工作中,我们提出了Dugban,这是一个深层双线性注意网络(BAN)框架,并适应了域的适应性,以明确学习药物与目标之间的配对局部相互作用,并适应了分布数据外的数据。 Dugban在药物分子图和靶蛋白序列上进行预测的作品,有条件结构域对抗性学习,以使跨不同分布的学习相互作用表示,以更好地对新型药物目标对进行更好的概括。在内域和跨域设置下,在三个基准数据集上进行的实验表明,对于五个最先进的基准,Dugban取得了最佳的总体表现。此外,可视化学习的双线性注意图图提供了可解释的见解,从预测结果中提供了可解释的见解。
translated by 谷歌翻译
蛋白质 - 配体相互作用(PLIS)是生化研究的基础,其鉴定对于估计合理治疗设计的生物物理和生化特性至关重要。目前,这些特性的实验表征是最准确的方法,然而,这是非常耗时和劳动密集型的。在这种情况下已经开发了许多计算方法,但大多数现有PLI预测大量取决于2D蛋白质序列数据。在这里,我们提出了一种新颖的并行图形神经网络(GNN),以集成PLI预测的知识表示和推理,以便通过专家知识引导的深度学习,并通过3D结构数据通知。我们开发了两个不同的GNN架构,GNNF是采用不同特种的基础实现,以增强域名认识,而GNNP是一种新颖的实现,可以预测未经分子间相互作用的先验知识。综合评价证明,GNN可以成功地捕获配体和蛋白质3D结构之间的二元相互作用,对于GNNF的测试精度和0.958,用于预测蛋白质 - 配体络合物的活性。这些模型进一步适用于回归任务以预测实验结合亲和力,PIC50对于药物效力和功效至关重要。我们在实验亲和力上达到0.66和0.65的Pearson相关系数,分别在PIC50和GNNP上进行0.50和0.51,优于基于2D序列的模型。我们的方法可以作为可解释和解释的人工智能(AI)工具,用于预测活动,效力和铅候选的生物物理性质。为此,我们通过筛选大型复合库并将我们的预测与实验测量数据进行比较来展示GNNP对SARS-COV-2蛋白靶标的实用性。
translated by 谷歌翻译
蛋白质是人类生命的重要组成部分,其结构对于功能和机制分析很重要。最近的工作表明了AI驱动方法对蛋白质结构预测的潜力。但是,新模型的开发受到数据集和基准测试培训程序的限制。据我们所知,现有的开源数据集远不足以满足现代蛋白质序列相关研究的需求。为了解决这个问题,我们介绍了具有高覆盖率和多样性的第一个百万级蛋白质结构预测数据集,称为PSP。该数据集由570K真实结构序列(10TB)和745K互补蒸馏序列(15TB)组成。此外,我们还提供了该数据集上SOTA蛋白结构预测模型的基准测试训练程序。我们通过参与客串比赛验证该数据集的实用程序进行培训,我们的模特赢得了第一名。我们希望我们的PSP数据集以及培训基准能够为AI驱动的蛋白质相关研究提供更广泛的AI/生物学研究人员社区。
translated by 谷歌翻译
蛋白质 - 蛋白质相互作用(PPI)对于许多生物过程至关重要,其中两种或更多种蛋白质物理地结合在一起以实现其功能。建模PPI对许多生物医学应用有用,例如疫苗设计,抗体治疗和肽药物发现。预先训练蛋白质模型以学习有效的代表对于PPI至关重要。对于PPI的大多数预训练模型是基于序列的,这是基于序列的,该模型是基于氨基酸序列的自然语言处理中使用的语言模型。更先进的作品利用结构感知的预训练技术,利用已知蛋白质结构的联系地图。然而,既不是序列和联系地图都可以完全表征蛋白质的结构和功能,这与PPI问题密切相关。灵感来自这种洞察力,我们提出了一种具有三种方式的多模式蛋白质预训练模型:序列,结构和功能(S2F)。值得注意的是,而不是使用联系地图来学习氨基酸水平刚性结构,而是用重度原子的点云的拓扑复合物编码结构特征。它允许我们的模型不仅仅是基于底部的结构信息,还可以了解侧链。此外,我们的模型包括从文献或手动注释中提取的蛋白质的功能描述中的知识。我们的实验表明,S2F学习蛋白质嵌入物,在包括各种PPI,包括跨物种PPI,抗体 - 抗原亲和预测,抗体中和对SARS-COV-2的抗体中和预测的蛋白质嵌入,以及突变驱动的结合亲和力变化预测。
translated by 谷歌翻译