We present 2-dimensional turbulent electric field calculations via physics-informed deep learning consistent with (i) drift-reduced Braginskii theory under the framework of an axisymmetric fusion plasma with purely toroidal field and (ii) experimental estimates of the fluctuating electron density and temperature on open field lines obtained from analysis of gas puff imaging of a discharge on the Alcator C-Mod tokamak. The inclusion of effects from the locally puffed atomic helium on particle and energy sources within the reduced plasma turbulence model are found to strengthen correlations between the electric field and electron pressure. The neutrals are also directly associated with broadening the distribution of turbulent field amplitudes and increasing ${\bf E \times B}$ shearing rates. This demonstrates a novel approach in plasma experiments by solving for nonlinear dynamics consistent with partial differential equations and data without encoding explicit boundary nor initial conditions.
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在整个计算科学中,越来越需要利用原始计算马力的持续改进,通过对蛮力的尺度锻炼的尺度增加,以增加网状元素数量的增加。例如,如果不考虑分子水平的相互作用,就不可能对纳米多孔介质的转运进行定量预测,即从紧密的页岩地层提取至关重要的碳氢化合物。同样,惯性限制融合模拟依赖于数值扩散来模拟分子效应,例如非本地转运和混合,而无需真正考虑分子相互作用。考虑到这两个不同的应用程序,我们开发了一种新颖的功能,该功能使用主动学习方法来优化局部细尺度模拟的使用来告知粗尺度流体动力学。我们的方法解决了三个挑战:预测连续性粗尺度轨迹,以推测执行新的精细分子动力学计算,动态地更新细度计算中的粗尺度,并量化神经网络模型中的不确定性。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
当系统中有某些未知术语和隐藏的物理机制时,基于第一原理的复杂物理系统的管理方程可能会非常具有挑战性。在这项工作中,我们采用深度学习体系结构来学习基于从完全动力学模型中获取的数据的等离子体系统的流体部分微分方程(PDE)。证明了学到的多臂流体PDE可以融合诸如Landau阻尼等动力学效应。基于学习的流体闭合,数据驱动的多音阶流体建模可以很好地再现从完全动力学模型中得出的所有物理量。Landau阻尼的计算阻尼率与完全动力学的模拟和线性理论一致。用于复杂物理系统的PDE的数据驱动的流体建模可以应用于改善流体闭合并降低全球系统多规模建模的计算成本。
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
机器学习电位通常是在基态的,未脑的能量表面上训练的,该能量表面仅取决于原子位置而不取决于模拟温度。这无视热激发电子的影响,这在金属中很重要,对于描述温暖的物质至关重要。这些效果的准确物理描述要求该核在温度依赖性电子自由能上移动。我们提出了一种方法,以在任意电子温度下使用地面计算中专门训练数据,避免需要训练温度依赖的电位,并在金属液体氢上基准在任意电子温度下获得该自由能的机器学习预测。天然气巨头和棕色矮人的核心。这项工作证明了混合方案的优势,这些方案使用物理考虑来结合机器学习预测,为开发类似方法的开发提供了蓝图,这些方法通过消除物理和数据驱动方法之间的屏障来扩展原子建模的覆盖范围。
translated by 谷歌翻译
背景信息:快速非LTE合成的计算成本是限制2D和3D反转码的开发的挑战之一。它还使得对在铬圈和过渡区域中形成的线的观察的解释是缓慢和计算昂贵的过程,这限制了在相当小的视野上的物理性质的推断。通过出发系数访问从LTE制度的快速计算偏差的方式可能在很大程度上减轻了这个问题。目的:我们建议建立并培训图形网络,该图网络快速预测原子级群体而不解决非LTE问题。方法:我们找到了图形网络的最佳架构,用于预测来自模型气氛的物理条件的原子水平的偏离系数。具有具有潜在模型气氛的代表性样本的合适数据集用于培训。使用现有的非LTE合成代码计算了该数据集。结果:图形网络已集成到现有的\ Caii案例中的现有合成和反演代码中。我们在计算速度上展示了数量级增益的顺序。我们分析了图形网络的泛化能力,并证明它为看不见的模型产生了良好的预测偏离系数。我们在\ Hazel \中实现此方法,并显示与使用标准非LTE反转代码获得的那些相比如何与之比较。我们的近似方法开辟了在大视野中从铬圈提取物理信息的可能性,随着时间的演变。这使我们能够了解更好的太阳区域,其中大的空间和时间尺度至关重要。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
泊松方程至关重要,以获得用于霍尔效应推进器和炉射线放电的等离子体流体模拟中的自我一致的解决方案,因为泊松解决方案看起来是不稳定的非线性流动方程的源期。作为第一步,使用多尺度架构研究了使用深神经网络的零小小的边界条件的求解2D泊松方程,以分支机构,深度和接收领域的数量定义。一个关键目标是更好地了解神经网络如何学习泊松解决方案,并提供指导方针来实现最佳网络配置,特别是当耦合到具有等离子体源术语的时变欧拉方程时。这里,发现接收领域对于正确捕获场的大拓扑结构至关重要。对多种架构,损失和封锁的调查提供了最佳的网络来准确解决稳定的泊松问题。然后在具有越来越多的节点的网格上监测称为Plasmanet的最佳神经网络求解器的性能,并与经典平行的线性溶剂进行比较。接下来,在电子等离子体振荡测试盒的上下文中,Plasmanet与不稳定的欧拉等离子体流体方程求解器联接。在这一时间不断发展的问题中,需要物理损失来产生稳定的模拟。最终测试了涉及化学和平流的更复杂的放电繁殖案例。应用了先前部分中建立的指导方针,以构建CNN,以解决具有不同边界条件的圆柱形坐标中的相同泊松方程。结果揭示了良好的CNN预测,并利用现代GPU的硬件铺平了新的计算策略,以预测涉及泊松方程的不稳定问题。
translated by 谷歌翻译
在本文中,我们为非稳定于3D流体结构交互系统提供了一种基于深度学习的阶数(DL-ROM)。所提出的DL-ROM具有非线性状态空间模型的格式,并采用具有长短期存储器(LSTM)的经常性神经网络。我们考虑一种以状态空间格式的可弹性安装的球体的规范流体结构系统,其具有不可压缩的流体流动。我们开发了一种非线性数据驱动的耦合,用于预测横向方向自由振动球的非定常力和涡旋诱导的振动(VIV)锁定。我们设计输入输出关系作为用于流体结构系统的低维逼近的力和位移数据集的时间序列。基于VIV锁定过程的先验知识,输入功能包含一系列频率和幅度,其能够实现高效的DL-ROM,而无需用于低维建模的大量训练数据集。一旦训练,网络就提供了输入 - 输出动态的非线性映射,其可以通过反馈过程预测较长地平线的耦合流体结构动态。通过将LSTM网络与Eigensystem实现算法(时代)集成,我们构造了用于减少阶稳定性分析的数据驱动状态空间模型。我们通过特征值选择过程调查VIV的潜在机制和稳定性特征。为了了解频率锁定机制,我们研究了针对降低振荡频率和质量比的范围的特征值轨迹。与全阶模拟一致,通过组合的LSTM-ERA程序精确捕获频率锁定分支。所提出的DL-ROM与涉及流体结构相互作用的物理学数字双胞胎的基于物理的数字双胞胎。
translated by 谷歌翻译
我们为从嘈杂和稀疏的相位对比度磁共振信号重建速度场的物理学压缩传感(图片)方法。该方法解决了逆向纳维尔的边界值问题,这使我们可以共同重建和分割速度场,同时推断隐藏量(例如流体力压力和壁剪应力)。使用贝叶斯框架,我们通过以高斯随机字段的形式引入有关未知参数的先验信息来使问题正常。使用Navier-Stokes问题,基于能量的分割功能,并要求重建与$ K $ -SPACE信号一致。我们创建了一种解决此重建问题的算法,并通过收敛喷嘴测试流量的噪声和稀疏$ K $空间信号。我们发现该方法能够从稀疏采样(15%$ k $ - 空间覆盖范围),低($ \ sim $$ 10 $ 10 $)信噪比(SNR)信号(SNR)信号和速度区域重建和细分速度字段。重建的速度场与来自相同流量的全部采样(100%$ k $ - 空间覆盖范围)高($> 40 $)SNR信号进行了很好的比较。
translated by 谷歌翻译
我们训练一个神经网络模型,以预测宇宙N体模拟的全相空间演化。它的成功表明,神经网络模型正在准确地近似绿色的功能扩展,该功能将模拟的初始条件与其在深层非线性方向上的后期结合到结果。我们通过评估其在具有已知精确解决方案或充分理解扩展的简单情况下的良好理解的简单案例上的表现来测试这种近似值的准确性。这些场景包括球形构型,隔离平面波和两个相互作用的平面波:与用于训练的高斯随机场有很大不同的初始条件。我们发现我们的模型可以很好地推广到这些良好理解的方案,这表明网络已经推断了一般的物理原理,并从复杂的随机高斯训练数据中学习了非线性模式耦合。这些测试还为查找模型的优势和劣势以及确定改进模型的策略提供了有用的诊断。我们还测试了仅包含横向模式的初始条件,该模式的模式不仅在其相位上有所不同,而且还与训练集中使用的纵向生长模式相比。当网络遇到与训练集正交的这些初始条件时,该模型将完全失败。除了这些简单的配置外,我们还评估了模型对N体模拟的标准初始条件的密度,位移和动量功率谱的预测。我们将这些摘要统计数据与N体结果和称为COLA的近似快速模拟方法进行了比较。我们的模型在$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $的非线性尺度上达到百分比精度,代表了对COLA的显着改进。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
动态磁共振成像(MRI)是一种流行的医学成像技术,可生成组织和器官内部对比度材料流动的图像序列。但是,仅在少数可行性研究中证明了它在通过食道运动中的成像运动中的应用,并且相对尚未探索。在这项工作中,我们提出了一个称为力学的MRI(MRI-MEC)的计算框架,该计算框架增强了该能力,从而增加了动态MRI在诊断食管疾病中的适用性。菠萝汁用作动态MRI的吞咽对比材料,MRI图像序列被用作MRI-MECH的输入。 MRI-MECH将食道建模为柔性的一维管,弹性管壁遵循线性管定律。然后,通过一维质量和动量保护方程式,通过食道流动。这些方程是使用物理信息的神经网络(PINN)求解的。 PINN最大程度地减少了MRI测量和模型预测之间的差异,以确保始终遵循流体流量问题的物理。 MRI-Mech计算了食管转运期间的流体速度和压力,并通过计算壁刚度和主动弛豫来估计食道健康的机械健康。此外,MRI-Mech预测了在排空过程中有关下食管下括约肌的缺失信息,这证明了其适用于缺少数据或图像分辨率差的方案。除了基于食管机械健康的定量估计值来改善临床决策外,MRI-MECH还可以增强用于应用其他医学成像方式以增强其功能。
translated by 谷歌翻译
放射造影通常用于探测动态系统中的复杂,不断发展的密度字段,以便在潜在的物理学中实现进入洞察力。该技术已用于许多领域,包括材料科学,休克物理,惯性监禁融合和其他国家安全应用。然而,在许多这些应用中,噪声,散射,复杂光束动力学等的并发症防止了密度的重建足以足以识别具有足够置信度的底层物理。因此,来自静态/动态射线照相的密度重建通常限于在许多这些应用中识别诸如裂缝和空隙的不连续特征。在这项工作中,我们提出了一种从基本上重建密度的基本上新的射线照片序列的密度。仅使用射线照相识别的稳健特征,我们将它们与使用机器学习方法的底层流体动力方程组合,即条件生成对冲网络(CGAN),以从射线照片的动态序列确定密度字段。接下来,我们寻求通过参数估计和投影的过程进一步提高ML的密度重建的流体动力学一致性,并进入流体动力歧管。在这种情况下,我们注意到,训练数据给出的流体动力歧管在被认为的参数空间中给出的测试数据是用于预测的稳定性的诊断,并用于增强培训数据库,期望后者将进一步降低未来的密度重建错误。最后,我们展示了这种方法优于传统的射线照相重建在捕获允许的流体动力学路径中的能力,即使存在相对少量的散射。
translated by 谷歌翻译