Decentralized learning with private data is a central problem in machine learning. We propose a novel distillation-based decentralized learning technique that allows multiple agents with private non-iid data to learn from each other, without having to share their data, weights or weight updates. Our approach is communication efficient, utilizes an unlabeled public dataset and uses multiple auxiliary heads for each client, greatly improving training efficiency in the case of heterogeneous data. This approach allows individual models to preserve and enhance performance on their private tasks while also dramatically improving their performance on the global aggregated data distribution. We study the effects of data and model architecture heterogeneity and the impact of the underlying communication graph topology on learning efficiency and show that our agents can significantly improve their performance compared to learning in isolation.
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习范式,可从分散的私人数据集中进行学习模型,在该数据集中将标签工作委托给客户。尽管大多数现有的FL方法都假定用户的设备很容易获得高质量的标签。实际上,标签噪声自然会发生在FL中,并遵循非i.i.d。客户之间的分布。由于非IID的挑战,现有的最先进的集中式方法表现出不令人满意的性能,而先前的FL研究依靠数据交换或重复的服务器端援助来提高模型的性能。在这里,我们提出了Fedln,这是一个框架,可以在不同的FL训练阶段处理标签噪声;即,FL初始化,设备模型培训和服务器模型聚合。具体而言,FedLN在单个联合回合中计算每客户噪声级估计,并通过纠正(或限制)噪声样本的效果来改善模型的性能。与其他现有方法相比,对各种公开视觉和音频数据集的广泛实验平均提高了24%,标签噪声水平为70%。我们进一步验证了FedLN在人类通知的现实世界嘈杂数据集中的效率,并报告了模型的识别率平均增长了9%,这强调了FEDLN对于改善提供给日常用户的FL服务很有用。
translated by 谷歌翻译
近年来,个性化联邦学习(PFL)引起了越来越关注其在客户之间处理统计异质性的潜力。然而,最先进的PFL方法依赖于服务器端的模型参数聚合,这需要所有模型具有相同的结构和大小,因此限制了应用程序以实现更多异构场景。要处理此类模型限制,我们利用异构模型设置的潜力,并提出了一种新颖的培训框架,为不同客户使用个性化模型。具体而言,我们将原始PFL中的聚合过程分为个性化组知识转移训练算法,即KT-PFL,这使得每个客户端能够在服务器端维护个性化软预测以指导其他人的本地培训。 KT-PFL通过使用知识系数矩阵的所有本地软预测的线性组合更新每个客户端的个性化软预测,这可以自适应地加强拥有类似数据分布的客户端之间的协作。此外,为了量化每个客户对他人的个性化培训的贡献,知识系数矩阵是参数化的,以便可以与模型同时培训。知识系数矩阵和模型参数在每轮梯度下降方式之后的每一轮中可替代地更新。在不同的设置(异构模型和数据分布)下进行各种数据集(EMNIST,Fashion \ _Mnist,CIFAR-10)的广泛实验。据证明,所提出的框架是第一个通过参数化群体知识转移实现个性化模型培训的联邦学习范例,同时实现与最先进的算法比较的显着性能增益。
translated by 谷歌翻译
联合学习的一个关键挑战是客户之间的数据异质性和失衡,这导致本地网络与全球模型不稳定的融合之间的不一致。为了减轻局限性,我们提出了一种新颖的建筑正则化技术,该技术通过在几个不同级别上接管本地和全球子网,在每个本地模型中构建多个辅助分支通过在线知识蒸馏。该提出的技术即使在非IID环境中也可以有效地鲁棒化,并且适用于各种联合学习框架,而不会产生额外的沟通成本。与现有方法相比,我们进行了全面的经验研究,并在准确性和效率方面表现出显着的性能提高。源代码可在我们的项目页面上找到。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
在金融和医疗保健等高度监管域中的机构通常存在围绕数据共享的限制性规则。联合学习是一种分布式学习框架,可以实现对分散数据的多机构合作,并改善了每个合作师的数据隐私的保护。在本文中,我们提出了一种用于分散的联邦学习的通信有效的方案,称为ProxyFL或基于代理的联合学习。 ProxyFL中的每个参与者都维护了两个模型,私人模型和旨在保护参与者隐私的公开共享代理模型。代理模型允许参与者之间的高效信息交换,使用PushSum方法而无需集中式服务器。所提出的方法通过允许模型异质性消除了规范联合学习的显着限制;每个参与者都可以拥有任何架构的私有模型。此外,我们通过代理通信的协议导致使用差异隐私分析的隐私保障更强。对流行的图像数据集的实验,以及使用超过30,000多个高质量的千兆的千兆子痫组织的泛癌诊断问题整个幻灯片图像,表明ProxyFL可以优于现有的现有替代方案,越来越少的沟通开销和更强大的隐私。
translated by 谷歌翻译
自从联合学习(FL)被引入具有隐私保护的分散学习技术以来,分布式数据的统计异质性是实现FL应用中实现稳健性能和稳定收敛性的主要障碍。已经研究了模型个性化方法来克服这个问题。但是,现有的方法主要是在完全标记的数据的先决条件下,这在实践中是不现实的,由于需要专业知识。由部分标记的条件引起的主要问题是,标记数据不足的客户可能会遭受不公平的性能增益,因为他们缺乏足够的本地分销见解来自定义全球模型。为了解决这个问题,1)我们提出了一个新型的个性化的半监督学习范式,该范式允许部分标记或未标记的客户寻求与数据相关的客户(助手代理)的标签辅助,从而增强他们对本地数据的认识; 2)基于此范式,我们设计了一个基于不确定性的数据关系度量,以确保选定的帮助者可以提供值得信赖的伪标签,而不是误导当地培训; 3)为了减轻助手搜索引入的网络过载,我们进一步开发了助手选择协议,以实现有效的绩效牺牲的有效沟通。实验表明,与其他具有部分标记数据的相关作品相比,我们提出的方法可以获得卓越的性能和更稳定的收敛性,尤其是在高度异质的环境中。
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
我们介绍了一个新颖的联合学习框架FedD3,该框架减少了整体沟通量,并开放了联合学习的概念,从而在网络受限的环境中进行了更多的应用程序场景。它通过利用本地数据集蒸馏而不是传统的学习方法(i)大大减少沟通量,并(ii)将转移限制为一击通信,而不是迭代的多路交流来实现这一目标。 FedD3允许连接的客户独立提炼本地数据集,然后汇总那些去中心化的蒸馏数据集(通常以几个无法识别的图像,通常小于模型小于模型),而不是像其他联合学习方法共享模型更新,而是允许连接的客户独立提炼本地数据集。在整个网络上仅一次形成最终模型。我们的实验结果表明,FedD3在所需的沟通量方面显着优于其他联合学习框架,同时,根据使用情况或目标数据集,它为能够在准确性和沟通成本之间的权衡平衡。例如,要在具有10个客户的非IID CIFAR-10数据集上训练Alexnet模型,FedD3可以通过相似的通信量增加准确性超过71%,或者节省98%的通信量,同时达到相同的准确性与其他联合学习方法相比。
translated by 谷歌翻译
今天的数据往往散布数十亿资源受限的边缘设备,具有安全性和隐私约束。联合学习(FL)已成为在保持数据私有的同时学习全球模型的可行解决方案,但FL的模型复杂性被边缘节点的计算资源阻碍。在这项工作中,我们调查了一种新的范例来利用强大的服务器模型来突破FL中的模型容量。通过选择性地从多个教师客户和本身学习,服务器模型开发深入的知识,并将其知识传输回客户端,以恢复它们各自的性能。我们所提出的框架在服务器和客户端模型上实现了卓越的性能,并在统一的框架中提供了几个优势,包括异构客户端架构的灵活性,对各种图像分类任务的客户端和服务器之间的通信效率。
translated by 谷歌翻译
联合学习(FL)是以隐私性的方式从分散数据培训全球模型的重要范例。现有的FL方法通常假定可以对任何参与客户端进行培训。但是,在实际应用中,客户的设备通常是异质的,并且具有不同的计算能力。尽管像伯特这样的大型模型在AI中取得了巨大的成功,但很难将它们应用于弱客户的异质FL。直接的解决方案(例如删除弱客户端或使用小型模型适合所有客户端)将带来一些问题,例如由于数据丢失或有限的模型表示能力而导致的掉落客户端的代表性不足和劣等精度。在这项工作中,我们提出了一种包含客户的联合学习方法,以解决此问题。包容性FL的核心思想是将不同尺寸的模型分配给具有不同计算功能的客户,为功能强大的客户提供的较大模型以及针对弱客户的较小客户。我们还提出了一种有效的方法,可以在多个具有不同大小的本地模型之间共享知识。这样,所有客户都可以参与FL中的模型学习,最终模型可以足够大。此外,我们提出了一种动量知识蒸馏方法,以更好地转移强大客户的大型模型中的知识,向弱客户的小型模型。在许多实际基准数据集上进行的广泛实验证明了该方法在FL框架下使用异质设备的客户学习准确模型的有效性。
translated by 谷歌翻译
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed~(Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data heterogeneity and system/resource heterogeneity. Hence, we propose \underline{R}esource-\underline{a}ware \underline{F}ederated \underline{L}earning~(RaFL) to address these challenges. RaFL allocates resource-aware models to edge devices using Neural Architecture Search~(NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Integrating NAS into FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译
联邦学习(FL)旨在以隐私的方式从大规模的分散设备中学习联合知识。但是,由于高质量标记的数据需要昂贵的人类智能和努力,因此带有错误标签的数据(称为嘈杂标签)无处不在,实际上不可避免地会导致性能退化。尽管提出了许多直接处理嘈杂标签的方法,但这些方法要么需要过多的计算开销,要么违反FL的隐私保护原则。为此,我们将重点放在FL上,目的是减轻嘈杂标签所产生的性能退化,同时保证数据隐私。具体而言,我们提出了一种局部自我调节方法,该方法通过隐式阻碍模型记忆噪声标签并明确地缩小了使用自我蒸馏之间的原始实例和增强实例之间的模型输出差异,从而有效地规范了局部训练过程。实验结果表明,我们提出的方法可以在三个基准数据集上的各种噪声水平中获得明显的抵抗力。此外,我们将方法与现有的最新方法集成在一起,并在实际数据集服装1M上实现卓越的性能。该代码可在https://github.com/sprinter1999/fedlsr上找到。
translated by 谷歌翻译
Privacy-preserving machine learning has become a key conundrum for multi-party artificial intelligence. Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device). In FL, each data holder trains a model locally and releases it to a central server for aggregation. In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation). While relevant in several settings, both of these schemes have a high communication cost, rely on server-level computation algorithms and do not allow for tunable levels of collaboration. In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss (contrastive w.r.t. the labels). The goal is to ensure that the participants learn similar features on similar classes without sharing their input data. To do so, each client releases averaged last hidden layer activations of similar labels to a central server that only acts as a relay (i.e., is not involved in the training or aggregation of the models). Then, the clients download these last layer activations (feature representations) of the ensemble of users and distill their knowledge in their personal model using a contrastive objective. For cross-device applications (i.e., small local datasets and limited computational capacity), this approach increases the utility of the models compared to independent learning and other federated knowledge distillation (FD) schemes, is communication efficient and is scalable with the number of clients. We prove theoretically that our framework is well-posed, and we benchmark its performance against standard FD and FL on various datasets using different model architectures.
translated by 谷歌翻译
Federated Learning (FL) enables the training of Deep Learning models without centrally collecting possibly sensitive raw data. This paves the way for stronger privacy guarantees when building predictive models. The most used algorithms for FL are parameter-averaging based schemes (e.g., Federated Averaging) that, however, have well known limits: (i) Clients must implement the same model architecture; (ii) Transmitting model weights and model updates implies high communication cost, which scales up with the number of model parameters; (iii) In presence of non-IID data distributions, parameter-averaging aggregation schemes perform poorly due to client model drifts. Federated adaptations of regular Knowledge Distillation (KD) can solve and/or mitigate the weaknesses of parameter-averaging FL algorithms while possibly introducing other trade-offs. In this article, we provide a review of KD-based algorithms tailored for specific FL issues.
translated by 谷歌翻译
联合学习允许一组分布式客户端培训私有数据的公共机器学习模型。模型更新的交换由中央实体或以分散的方式管理,例如,由一个区间的。但是,所有客户端的强大概括都使得这些方法不合适,不合适地分布(非IID)数据。我们提出了一个统一的统一方法,在联合学习中的权力下放和个性化,该方法是基于模型更新的定向非循环图(DAG)。客户端代替培训单个全局模型,客户端专门从事来自其他客户端的模型更新的本地数据,而不是依赖于各自数据的相似性。这种专业化从基于DAG的沟通和模型更新的选择隐含地出现。因此,我们启用专业模型的演变,它专注于数据的子集,因此覆盖非IID数据,而不是在基于区块的基于区块的设置中的联合学习。据我们所知,拟议的解决方案是第一个在完全分散的联邦学习中团结的个性化和中毒鲁棒性。我们的评价表明,模型的专业化直接从基于DAG的模型更新通信到三个不同的数据集。此外,与联合平均相比,我们在客户端展示稳定的模型精度和更少的方差。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
联合学习允许多方协作,在不共享本地数据的情况下协作培训联合模型。这使得机器学习在固有的分布式的,诸如医疗领域中的固有分布式的未差异数据的设置中的应用。在实践中,通常通过聚合当地模型来实现联合培训,其中当地培训目标必须与联合(全球)目标相似。然而,通常,当地数据集是如此之小,即当地目标从全球目标差异很大,导致联合学习失败。我们提出了一种新的方法,它与本地模型的排列交织在一起。排列将每个本地模型暴露给当地数据集的菊花链,导致数据稀疏域中的更有效培训。这使得能够培训极小的本地数据集,例如跨医院的患者数据,同时保留联合学习的培训效率和隐私效益。
translated by 谷歌翻译