本文为一组移动机器人提供了一种算法,可以同时学习域上的空间字段,并在空间上分发自己以最佳覆盖。从以前的方法通过集中式高斯过程估算空间场的方法,这项工作利用了覆盖范围问题的空间结构,并提出了一种分散的策略,其中样本通过通过Voronoi分区的边界来建立通信在本地汇总。我们提出了一种算法,每个机器人都通过其自身测量值和Voronoi邻居提供的局部高斯流程运行局部高斯过程,该过程仅在提供足够新颖的信息时才将其纳入单个机器人的高斯过程中。在模拟中评估算法的性能,并与集中式方法进行比较。
translated by 谷歌翻译
本文提出了一种以完全分布式方式工作的协同环境学习算法。多机器人系统比单个机器人更有效,但它涉及以下挑战:1)使用多个机器人在线分布式学习环境地图; 2)基于学习地图的安全和有效的探索路径的产生; 3)对机器人数量的维持能力。为此,我们将整个过程划分为环境学习和路径规划的两个阶段。在每个阶段应用分布式算法并通过相邻机器人之间的通信组合。环境学习算法使用分布式高斯过程,路径规划算法使用分布式蒙特卡罗树搜索。因此,我们构建一个可扩展系统,而无需对机器人数量的约束。仿真结果证明了所提出的系统的性能和可扩展性。此外,基于实际数据集的仿真验证了我们算法在更现实的方案中的实用程序。
translated by 谷歌翻译
本文介绍了适用于各种实用多机器人应用的分布式算法。在这种多机器人应用中,使命的用户定义目标可以作为一般优化问题投射,而无需每个不同机器人的子任务的明确指南。由于环境未知,未知的机器人动态,传感器非线性等,优化成本函数的分析形式不可用。因此,标准梯度 - 下降样算法不适用于这些问题。为了解决这个问题,我们介绍了一种新的算法,仔细设计每个机器人的子变速功能,优化可以实现整个团队目标。在该转换时,我们提出了一种基于基于认知的自适应优化(CAO)算法的分布式方法,其能够近似每个机器人成本函数的演变并充分优化其决策变量(机器人动作)。后者可以通过在线学习来实现影响特派团目标的特定特定特征。总体而言,低复杂性算法可以简单地结合任何类型的操作约束,是容错的,并且可以适当地解决时变的成本函数。这种方法的基石是它与块坐标血管下降算法相同的收敛特征。该算法在多种方案下的三个异构模拟设置中评估,针对通用和特定于问题的算法。源代码可在\ url {https://github.com/athakapo/a-distributed-plug-lobot-applications}中获得。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
在本文中,我们设计了一个基于信息的多机器人来源,以寻求算法,其中一组移动传感器仅使用基于局部范围的测量值就本地化并移动靠近单个源。在算法中,移动传感器执行源标识/本地化以估计源位置;同时,他们移至新位置,以最大程度地提高有关传感器测量中包含的源的Fisher信息。在这样做的过程中,它们改善了源位置估计,并更靠近源。与传统的攀登算法相比,我们的算法在收敛速度方面具有优越性,在测量模型和信息指标的选择中是灵活的,并且对测量模型误差非常强大。此外,我们提供了算法的完全分布式版本,每个传感器都决定自己的动作,并且仅通过稀疏的通信网络与邻居共享信息。我们进行密集的仿真实验,以测试带有光传感器的小型地面车辆上的大规模系统和物理实验的算法,这表明在寻求光源方面取得了成功。
translated by 谷歌翻译
在本文中,我们为具有异质传感器的机器人团队提供了在线自适应计划策略,以使用学习的模型进行决策模型从潜在空间领域进行采样。当前的机器人抽样方法试图收集有关可观察到的空间场的信息。但是,许多应用程序,例如环境监测和精确农业,都涉及不直接观察或衡量昂贵的现象,称为潜在现象。在我们的方法中,我们试图通过使用具有异质传感器的机器人团队有效地采样可观察到的空间场来实时推理潜在现象,在这种空间场中,每个机器人都有一个独特的传感器来测量不同可观察的场。信息增益是使用从可观察到的空间场映射到潜在现象的学习模型来估计的。该模型捕获了关系中的不确定性,以允许信息理论措施。此外,我们明确考虑可观察到的空间场之间的相关性,从而捕获了观察结果并非独立的传感器类型之间的关系。我们表明,可以学习这些相关性,并研究学习相关模型对我们采样方法性能的影响。通过我们的定性和定量结果,我们说明了经验学习的相关性提高了团队的整体抽样效率。我们使用在魁北克的Lac Hertel上收集的传感器测量数据集模拟我们的方法,我们可以公开使用。
translated by 谷歌翻译
多机器人自适应抽样问题旨在为机器人团队找到轨迹,以有效地对机器人的给定耐力预算中的感兴趣现象进行采样。在本文中,我们使用分散的多代理增强学习来提出一种可靠,可扩展的方法,用于准静态环境过程的合作自适应采样(MARLAS)。鉴于该领域的先验采样,该提议的方法学习了一个机器人团队的分散政策,以在固定预算范围内采样高实现区域。多机器人自适应采样问题要求机器人彼此协调,以避免重叠的采样轨迹。因此,我们编码机器人之间的邻居位置和间歇性通信在学习过程中的估计值。我们评估了Marlas对多个性能指标的评估,发现它的表现优于其他基线多机器人采样技术。我们进一步证明了与机器人团队的大小和所采样区域的大小相对于通信失败和可伸缩性的鲁棒性。实验评估既是对真实数据的模拟,又在演示环境设置的实际机器人实验中进行的。
translated by 谷歌翻译
我们考虑一个设置机器人团队的任务是跟踪以下属性的多个目标:接近目标可以实现更准确的目标位置估计,同时也增加了传感器故障的风险。因此,要解决跟踪质量最大化和风险最小化之间的权衡至关重要。在我们以前的工作中,开发了一个集中式控制器来规划所有机器人的动作 - 但是,这不是可扩展的方法。在这里,我们提出了一个分散且具有风险的多目标跟踪框架,在该框架中,每个机器人都计划其运动交易的跟踪准确性最大化和厌恶风险,同时仅依靠其与邻居交流的信息和信息。我们使用控制屏障函数来保证整个跟踪过程中的网络连接。广泛的数值实验表明,我们的系统可以达到与集中式同行相似的跟踪准确性和风险意识。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
移动机器人的精确位置信息对于导航和任务处理至关重要,尤其是对于多机器人系统(MRS),可以从该领域进行协作和收集有价值的数据。但是,在无法访问GPS信号(例如在环境控制,室内或地下环境中)的机器人发现很难单独使用其传感器找到。结果,机器人共享其本地信息以改善其本地化估计,使整个MRS团队受益。已经尝试使用无线电信号强度指标(RSSI)作为计算轴承信息的来源进行了几次尝试模拟基于多机器人的定位。我们还利用了通过系统中多个机器人的通信生成的无线网络,并旨在在动态环境中具有很高准确性和效率的定位代理,以共享信息融合以完善本地化估计。该估计器结构减少了一个测量相关性的来源,同时适当地纳入了其他相关性。本文提出了一个分散的多机器人协同定位系统(MRSL),以实现密集和动态的环境。每当从邻居那里收到新信息时,机器人都会更新其位置估计。当系统感觉到该地区其他机器人的存在时,它会交换位置估计并将接收到的数据合并以提高其本地化精度。我们的方法使用基于贝叶斯规则的集成,该集成已证明在计算上是有效的,适用于异步机器人通信。我们已经使用数量不同的机器人进行了广泛的仿真实验,以分析算法。 MRSL与RSSI的本地化准确性优于文献中的其他算法,对未来发展有很大的希望。
translated by 谷歌翻译
在本文中,我们在不确定的沟通和对抗性攻击者的影响下解决了多机器人信息路径计划(MIPP)任务。目的是创建一个多机器人系统,尽管存在损坏的机器人共享恶意信息,但仍可以学习并统一对未知环境的知识。我们使用高斯工艺(GP)来对未知环境进行建模,并使用相互信息的指标来定义信息。我们MIPP任务的目标是最大化团队收集的信息量,同时最大程度地提高弹性弹性的可能性。不幸的是,这些目标是矛盾的,尤其是在探索需要机器人之间断开连接的大环境时。结果,我们强加了一个概率的通信约束,该概率可以使机器人间歇性地满足和弹性地共享信息,然后在所有其他时间内采取行动以最大程度地提高收集的信息。为了解决我们的问题,我们选择具有最高弹性概率的会议位置,并使用顺序贪婪算法来优化机器人探索的路径。最后,我们通过比较应用弹性和非弹性MIPP算法的良好行为机器人的学习能力来展示结果的有效性。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
多机器人覆盖计划问题的集中式方法缺乏可扩展性。基于学习的分布式算法除了将面向数据的功能生成功能带入表格外,还提供了可扩展的途径,从而允许与其他基于学习的方法集成。为此,我们提出了一个基于学习的,可区分的分布式覆盖范围计划(D2COPL A N),该计划者与专家算法相比在运行时和代理数量上有效地扩展,并与经典分布式算法相同。此外,我们表明D2Coplan可以与其他学习方法无缝地结合到端到端的学习方法,从而提供了比单独训练的模块更好的解决方案,从而打开了进一步的研究,以进一步研究以经典方法难以捉摸的任务。
translated by 谷歌翻译
这项工作提出了一个非参数时空模型,用于在长期背景下通过移动自主机器人绘制人类活动。基于变异性高斯过程回归,该模型结合了先前的空间和时间周期性依赖性信息,以创建人类事件的连续表示。由机器人运动产生的不均匀数据分布通过异源性可能性函数包括在模型中,可以作为预测性不确定性。使用稀疏的公式,可以在数周内进行数据集,并且可以将数百平方米用于模型创建。基于多周数据集的实验评估表明,所提出的方法在预测质量和随后的路径计划方面都超过了艺术的表现。
translated by 谷歌翻译
通过移动机器人收集数据的自动化有望提高环境调查的功效,但要求该系统自主确定如何在避免障碍的同时采样环境。现有的方法,例如Boustrophedon分解算法,可以将环境完全覆盖到指定的分辨率上,但是在许多情况下,分布分辨率进行采样将产生长的路径,并具有不可算数的测量值。减少这些路径可能会导致可行的计划,而以分配估计精度为代价。这项工作探讨了分布精度和小路分解算法的路径长度之间的权衡。我们通过计算指标来量化算法性能,以在环境分布中计算蒙特卡洛模拟中的准确性和路径长度。我们强调的是,应将一个目标优先于另一个目标,并提出对算法的修改,以通过更均匀地采样来提高其有效性。这些结果证明了Boustrophedon算法的智能部署如何有效指导自主环境抽样。
translated by 谷歌翻译
对于多种代理的动力学物理耦合的任务,例如,在合作操作中,各个代理之间的协调变得至关重要,这需要确切的相互作用动力学知识。通常使用集中式估计器来解决此问题,这可能会对整个系统的灵活性和鲁棒性产生负面影响。为了克服这一缺点,我们提出了一个新颖的分布式学习框架,用于使用贝叶斯原理进行合作操作的典范任务。仅使用局部状态信息,每个代理都会获得对象动力学和掌握运动学的估计。这些本地估计是使用动态平均共识组合的。由于该方法的概率基础很强,因此对象动力学和掌握运动学的每个估计都伴随着一种不确定性的度量,该度量允许以高概率保证有界的预测误差。此外,贝叶斯原理直接允许迭代学习以持续的复杂性,以便可以在实时应用程序中在线使用所提出的学习方法。该方法的有效性在模拟的合作操作任务中得到了证明。
translated by 谷歌翻译
多机器人决策是多个机器人协调操作的过程。在本文中,尽管机器人有限的车载资源和其任务的资源要求复杂性,但我们的目标是可扩展可靠的多机器人决策。我们介绍了第一种使机器人可以选择其他机器人协调的算法,从而平衡了集中式与分散协调的权衡。特别是,集中化有利于全球近乎最佳的决策,但付出了增加的船上资源要求;而权力下放有利于最小的资源要求,但以全球次优的成本。因此,所有机器人都可以负担我们的算法,无论其资源如何。我们受到自治的未来的激励,涉及多个机器人协调行动以完成资源需求任务,例如目标跟踪和区域覆盖。为了提供封闭形式的特征,我们专注于涉及单调和“双重”下函数的最大化问题。为了捕获权力下放的成本,我们介绍了在非邻居(COIN)中的信息集中概念。我们在图像覆盖的模拟场景中验证我们的算法。
translated by 谷歌翻译
This paper proposes a new 3D gas distribution mapping technique based on the local message passing of Gaussian belief propagation that is capable of resolving in real time, concentration estimates in 3D space whilst accounting for the obstacle information within the scenario, the first of its kind in the literature. The gas mapping problem is formulated as a 3D factor graph of Gaussian potentials, the connections of which are conditioned on local occupancy values. The Gaussian belief propagation framework is introduced as the solver and a new hybrid message scheduler is introduced to increase the rate of convergence. The factor graph problem is then redesigned as a dynamically expanding inference task, coupling the information of consecutive gas measurements with local spatial structure obtained by the robot. The proposed algorithm is compared to the state of the art methods in 2D and 3D simulations and is found to resolve distribution maps orders of magnitude quicker than typical direct solvers. The proposed framework is then deployed for the first time onboard a ground robot in a 3D mapping and exploration task. The system is shown to be able to resolve multiple sensor inputs and output high resolution 3D gas distribution maps in a GPS denied cluttered scenario in real time. This online inference of complicated plume structures provides a new layer of contextual information over its 2D counterparts and enables autonomous systems to take advantage of real time estimates to inform potential next best sampling locations.
translated by 谷歌翻译
本文报告了对使用一辆或多种无人地面车辆(USV)快速识别通道的快速识别通道问题的研究。一种称为基于建议的自适应通道搜索(PBAC)的新算法作为一种潜在的解决方案,可改善当前方法。将PBAC的经验性能与割草机测量和马尔可夫决策过程(MDP)计划进行了比较,该计划具有两个最先进的奖励功能:上限置信度(UCB)和最大价值信息(MVI)。通过比较使用一个,两个,三个或四个USV识别连续通道的时间来评估每种方法的性能。在十个模拟的测深场景和一个野外区域中比较每种方法的性能,每种方法都有不同的频道布局。模拟和现场试验的结果表明,平均多车辆PBAC优于基于割草机,UCB和基于MVI的方法,尤其是在使用至少三辆车辆时。
translated by 谷歌翻译
近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些无人机团队对火的轨道(即位置和传播动态)进行推理的能力,以提供性能保证时间范围。在空中野火监测的问题上,我们提出了一个预测框架,该框架使多UAV团队的合作能够与概率性能保证一起进行协作现场覆盖和火灾跟踪。我们的方法使无人机能够推断出潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定于案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和救援,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明真实的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最新的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。
translated by 谷歌翻译