我们在执行姿势图优化(PGO)的机器人团队中提供了一份新颖的合作框架,该团队解决了解决多机器人SLAM的两个重要挑战:i)通过在不使用地图的情况下通过活动的Rendezvous实现信息交换“按需”的两个重要挑战机器人的位置和ii)拒绝偏远的测量。我们的主要洞察力是利用机器人之间的通信信道中存在的相对位置数据来提高PGO的基地精度。我们开发一种用于将信道状态信息(CSI)与多机器人PGO集成的算法和实验框架;它是分布式的,适用于低灯或无特色环境,传统传感器经常失败。我们对实际机器人提供了广泛的实验结果,并观察了使用活跃的Rendezvous导致在地面真理姿势错误的64%减少中,使用CSI观察援助异常拒绝将地面真理造成错误减少32%。这些结果表明,将通信作为新颖的Slam传感器集成的可能性。
translated by 谷歌翻译