自我监督模型在机器学习(ML)中越来越普遍,因为它们减少了对昂贵标签数据的需求。由于它们在下游应用程序中的多功能性,它们越来越多地用作通过公共API暴露的服务。同时,由于它们输出的向量表示的高维度,这些编码器模型特别容易受到模型窃取攻击的影响。然而,编码器仍然没有防御:窃取攻击的现有缓解策略集中在监督学习上。我们介绍了一个新的数据集推理防御,该防御使用受害者编码器模型的私人培训集将其所有权归因于窃取的情况。直觉是,如果受害者从受害者那里窃取了编码器的培训数据,则在受害者的培训数据上,编码器的输出表示的对数可能比测试数据更高,但如果对其进行了独立培训,则不会。我们使用密度估计模型来计算该对数可能性。作为我们评估的一部分,我们还建议测量被盗编码器的保真度并量化盗窃检测的有效性,而无需涉及下游任务;相反,我们利用相互信息和距离测量值。我们在视觉领域中广泛的经验结果表明,数据集推断是捍卫自我监督模型免受模型窃取的有前途的方向。
translated by 谷歌翻译
自我监督学习(SSL)是一个日益流行的ML范式,它训练模型以将复杂的输入转换为表示形式而不依赖于明确的标签。这些表示编码的相似性结构可以有效学习多个下游任务。最近,ML-AS-A-A-Service提供商已开始为推理API提供训练有素的SSL模型,该模型将用户输入转换为有用的费用表示。但是,训练这些模型及其对API的曝光涉及的高昂成本都使黑盒提取成为现实的安全威胁。因此,我们探索了对SSL的窃取攻击的模型。与输出标签的分类器上的传统模型提取不同,受害者模型在这里输出表示;与分类器的低维预测分数相比,这些表示的维度明显更高。我们构建了几次新颖的攻击,发现直接在受害者被盗的陈述上训练的方法是有效的,并且能够为下游模型高精度。然后,我们证明现有针对模型提取的防御能力不足,并且不容易改装为SSL的特异性。
translated by 谷歌翻译
自我监督学习是一种新兴的机器学习(ML)范式。与监督的学习相比,哪些利用高质量标记的数据集以实现良好的性能相比,自我监督的学习依赖于未标记的数据集来预先培训功能强大的编码器,然后可以将其视为各种下游任务的功能提取器。大量的数据和计算资源消耗使编码器本身成为模型所有者的宝贵知识产权。最近的研究表明,ML模型的版权受到模型窃取攻击的威胁,该攻击旨在训练替代模型以模仿给定模型的行为。我们从经验上表明,预训练的编码器极易受到模型窃取攻击的影响。但是,版权保护算法(例如水印)的大多数努力集中在分类器上。同时,预先培训的编码器版权保护的内在挑战在很大程度上仍然没有研究。我们通过提出SSLGuard,这是第一种用于预训练的编码器的水印算法。鉴于干净的预训练编码器,SSLGuard向其中注入了水印,并输出了水印版本。还采用了阴影训练技术来保留潜在模型窃取攻击下的水印。我们广泛的评估表明,SSLGuard在水印注入和验证方面有效,并且可以防止模型窃取和其他水印去除攻击,例如输入噪声,输出扰动,覆盖,覆盖,模型修剪和微调。
translated by 谷歌翻译
在模型提取攻击中,对手可以通过反复查询并根据获得的预测来窃取通过公共API暴露的机器学习模型。为了防止模型窃取,现有的防御措施专注于检测恶意查询,截断或扭曲输出,因此必然会为合法用户引入鲁棒性和模型实用程序之间的权衡。取而代之的是,我们建议通过要求用户在阅读模型的预测之前完成工作证明来阻碍模型提取。这可以通过大大增加(甚至高达100倍)来阻止攻击者,以利用查询访问模型提取所需的计算工作。由于我们校准完成每个查询的工作证明所需的努力,因此这仅为常规用户(最多2倍)引入一个轻微的开销。为了实现这一目标,我们的校准应用了来自差异隐私的工具来衡量查询揭示的信息。我们的方法不需要对受害者模型进行任何修改,可以通过机器学习从业人员来应用其公开暴露的模型免于轻易被盗。
translated by 谷歌翻译
预训练的编码器是通用特征提取器,可用于许多下游任务。自我监督学习的最新进展可以使用大量未标记的数据预先培训高效编码器,从而导致新兴编码器作为服务(EAAS)。预先训练的编码器可能被视为机密性,因为其培训需要大量数据和计算资源及其公开发布可能有助于滥用AI,例如,以进行深层效果。在本文中,我们提出了第一次称为Stolenencoder的攻击,以窃取预训练的图像编码器。我们评估了由我们自己预先训练的多个目标编码器和三个现实世界目标编码器的stolenencoder,包括由Google预先培训的Imagenet编码器,由OpenAI预先培训的剪辑编码器以及Clarifai的一般嵌入式编码器部署为付费EAAS。我们的结果表明,我们被盗的编码器与目标编码器具有相似的功能。特别是,构建在目标编码器和被盗的下游分类器具有相似的精度。此外,使用StolenenCoder窃取目标编码器所需的数据和计算资源要比从头开始进行预训练要少得多。我们还探索了三个防御能力,这些防御能力扰动目标编码器产生的矢量。我们的结果表明,这些防御措施不足以减轻Stolenencoder。
translated by 谷歌翻译
Contrastive learning pre-trains an image encoder using a large amount of unlabeled data such that the image encoder can be used as a general-purpose feature extractor for various downstream tasks. In this work, we propose PoisonedEncoder, a data poisoning attack to contrastive learning. In particular, an attacker injects carefully crafted poisoning inputs into the unlabeled pre-training data, such that the downstream classifiers built based on the poisoned encoder for multiple target downstream tasks simultaneously classify attacker-chosen, arbitrary clean inputs as attacker-chosen, arbitrary classes. We formulate our data poisoning attack as a bilevel optimization problem, whose solution is the set of poisoning inputs; and we propose a contrastive-learning-tailored method to approximately solve it. Our evaluation on multiple datasets shows that PoisonedEncoder achieves high attack success rates while maintaining the testing accuracy of the downstream classifiers built upon the poisoned encoder for non-attacker-chosen inputs. We also evaluate five defenses against PoisonedEncoder, including one pre-processing, three in-processing, and one post-processing defenses. Our results show that these defenses can decrease the attack success rate of PoisonedEncoder, but they also sacrifice the utility of the encoder or require a large clean pre-training dataset.
translated by 谷歌翻译
半监督学习(SSL)利用标记和未标记的数据来训练机器学习(ML)模型。最先进的SSL方法可以通过利用更少的标记数据来实现与监督学习相当的性能。但是,大多数现有作品都集中在提高SSL的性能。在这项工作中,我们通过研究SSL的培训数据隐私来采取不同的角度。具体而言,我们建议针对由SSL训练的ML模型进行的第一个基于数据增强的成员推理攻击。给定数据样本和黑框访问模型,成员推理攻击的目标是确定数据样本是否属于模型的训练数据集。我们的评估表明,拟议的攻击可以始终超过现有的成员推理攻击,并针对由SSL训练的模型实现最佳性能。此外,我们发现,SSL中会员泄漏的原因与受到监督学习中普遍认为的原因不同,即过度拟合(培训和测试准确性之间的差距)。我们观察到,SSL模型已被概括为测试数据(几乎为0个过度拟合),但“记住”训练数据通过提供更自信的预测,无论其正确性如何。我们还探索了早期停止,作为防止成员推理攻击SSL的对策。结果表明,早期停止可以减轻会员推理攻击,但由于模型的实用性降解成本。
translated by 谷歌翻译
近年来,在自学学习(SSL)方面取得了重大成功,这有助于各种下游任务。但是,攻击者可能会窃取此类SSL模型并将其商业化以获利,这对于保护其知识产权(IP)至关重要。大多数现有的IP保护解决方案都是为监督学习模型而设计的,不能直接使用,因为它们要求模型的下游任务和目标标签在水印嵌入过程中已知并获得,这在SSL的域中并非总是可以的。为了解决此类问题,尤其是在水印嵌入过程中下游任务多样化且未知时,我们提出了一种新型的黑盒水印解决方案,名为SSL-WM,以保护SSL模型的所有权。 SSL-WM将水印编码器的水印输入映射到不变的表示空间中,该空间会导致任何下游分类器产生预期的行为,从而允许检测到嵌入式水印。我们使用不同的SSL模型(包括基于对比度和基于生成的生成型)来评估许多任务,例如计算机视觉(CV)和自然语言处理(NLP)等许多任务。实验结果表明,SSL-WM可以有效地验证各种下游任务中被盗SSL模型的所有权。此外,SSL-WM对模型进行微调和修剪攻击非常强大。最后,SSL-WM还可以从评估的水印检测方法中逃避检测,从而证明了其在保护SSL模型IP时的有希望的应用。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
translated by 谷歌翻译
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge.We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing stateof-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
translated by 谷歌翻译
会员推理攻击是机器学习模型中最简单的隐私泄漏形式之一:给定数据点和模型,确定该点是否用于培训模型。当查询其培训数据时,现有会员推理攻击利用模型的异常置信度。如果对手访问模型的预测标签,则不会申请这些攻击,而不会置信度。在本文中,我们介绍了仅限标签的会员资格推理攻击。我们的攻击而不是依赖置信分数,而是评估模型预测标签在扰动下的稳健性,以获得细粒度的隶属信号。这些扰动包括常见的数据增强或对抗例。我们经验表明,我们的标签占会员推理攻击与先前攻击相符,以便需要访问模型信心。我们进一步证明,仅限标签攻击违反了(隐含或明确)依赖于我们呼叫信心屏蔽的现象的员工推论攻击的多种防御。这些防御修改了模型的置信度分数以挫败攻击,但留下模型的预测标签不变。我们的标签攻击展示了置信性掩蔽不是抵御会员推理的可行的防御策略。最后,我们调查唯一的案例标签攻击,该攻击推断为少量异常值数据点。我们显示仅标签攻击也匹配此设置中基于置信的攻击。我们发现具有差异隐私和(强)L2正则化的培训模型是唯一已知的防御策略,成功地防止所有攻击。即使差异隐私预算太高而无法提供有意义的可证明担保,这仍然存在。
translated by 谷歌翻译
剪辑在零拍传输学习任务上产生了令人印象深刻的结果,并被视为BERT或GPT3等基础模型。具有丰富表示形式的剪辑视觉模型是使用Infonce目标和自然语言监督对特定任务进行微调之前进行预训练的。尽管剪辑在零拍传输学习方面表现出色,但它遭受了解释的问题,也就是说,它的重点是一个或几个功能,同时忽略了其他相关功能。该问题是由于原始多模式数据中未充分提取协方差结构而引起的。我们建议使用现代Hopfield网络来解决解释的问题。他们检索到的嵌入具有富集的协方差结构,该结构源自存储嵌入中特征的共发生。但是,现代的Hopfield网络增加了阻碍学习的Infonce目标的饱和效应。我们建议使用Infoloob目标来减轻这种饱和效果。我们介绍了小说``对比抛弃了一个增压'(Cloob),该小说使用现代的Hopfield网络与Infoloob Opportions一起进行协方差丰富。在实验中,我们将Cloob与概念标题进行预培训后的剪辑和YFCC数据集进行了比较,相对于其在其他数据集上的零拍传输学习性能。 Cloob在所有考虑的架构和数据集中始终在零摄像转移学习上胜过剪辑。
translated by 谷歌翻译
我们从统计依赖性角度接近自我监督的图像表示学习,提出与希尔伯特 - 施密特独立性标准(SSL-HSIC)自我监督的学习。 SSL-HSIC最大化图像和图像标识的变换表示之间的依赖性,同时最小化这些表示的核化方差。该框架产生了对Infonce的新了解,在不同转换之间的相互信息(MI)上的变分下限。虽然已知MI本身具有可能导致学习无意义的表示的病理学,但其绑定表现得更好:我们表明它隐含地近似于SSL-HSIC(具有略微不同的规范器)。我们的方法还向我们深入了解Byol,一种无与伦比的SSL方法,因为SSL-HSIC类似地了解了当地的样本邻居。 SSL-HSIC允许我们在批量大小中直接在时间线性上直接优化统计依赖性,而无需限制数据假设或间接相互信息估计。 SSL-HSIC培训或没有目标网络,SSL-HSIC与Imagenet的标准线性评估相匹配,半监督学习和转移到其他分类和视觉任务,如语义分割,深度估计和对象识别等。代码可在https://github.com/deepmind/ssl_hsic提供。
translated by 谷歌翻译
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
translated by 谷歌翻译
员额推理攻击允许对训练的机器学习模型进行对手以预测模型的训练数据集中包含特定示例。目前使用平均案例的“精度”度量来评估这些攻击,该攻击未能表征攻击是否可以自信地识别培训集的任何成员。我们认为,应该通过计算其低(例如<0.1%)假阳性率来计算攻击来评估攻击,并在以这种方式评估时发现大多数事先攻击差。为了解决这一问题,我们开发了一个仔细结合文献中多种想法的似然比攻击(Lira)。我们的攻击是低于虚假阳性率的10倍,并且在攻击现有度量的情况下也严格占主导地位。
translated by 谷歌翻译
Privacy-preserving inference via edge or encrypted computing paradigms encourages users of machine learning services to confidentially run a model on their personal data for a target task and only share the model's outputs with the service provider; e.g., to activate further services. Nevertheless, despite all confidentiality efforts, we show that a ''vicious'' service provider can approximately reconstruct its users' personal data by observing only the model's outputs, while keeping the target utility of the model very close to that of a ''honest'' service provider. We show the possibility of jointly training a target model (to be run at users' side) and an attack model for data reconstruction (to be secretly used at server's side). We introduce the ''reconstruction risk'': a new measure for assessing the quality of reconstructed data that better captures the privacy risk of such attacks. Experimental results on 6 benchmark datasets show that for low-complexity data types, or for tasks with larger number of classes, a user's personal data can be approximately reconstructed from the outputs of a single target inference task. We propose a potential defense mechanism that helps to distinguish vicious vs. honest classifiers at inference time. We conclude this paper by discussing current challenges and open directions for future studies. We open-source our code and results, as a benchmark for future work.
translated by 谷歌翻译
机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
机器学习模型容易记住敏感数据,使它们容易受到会员推理攻击的攻击,其中对手的目的是推断是否使用输入样本来训练模型。在过去的几年中,研究人员产生了许多会员推理攻击和防御。但是,这些攻击和防御采用各种策略,并在不同的模型和数据集中进行。但是,缺乏全面的基准意味着我们不了解现有攻击和防御的优势和劣势。我们通过对不同的会员推理攻击和防御措施进行大规模测量来填补这一空白。我们通过研究九项攻击和六项防御措施来系统化成员的推断,并在整体评估中衡量不同攻击和防御的性能。然后,我们量化威胁模型对这些攻击结果的影响。我们发现,威胁模型的某些假设,例如相同架构和阴影和目标模型之间的相同分布是不必要的。我们也是第一个对从Internet收集的现实世界数据而不是实验室数据集进行攻击的人。我们进一步研究是什么决定了会员推理攻击的表现,并揭示了通常认为过度拟合水平不足以成功攻击。取而代之的是,成员和非成员样本之间的熵/横向熵的詹森 - 香农距离与攻击性能的相关性更好。这为我们提供了一种新的方法,可以在不进行攻击的情况下准确预测会员推理风险。最后,我们发现数据增强在更大程度上降低了现有攻击的性能,我们提出了使用增强作用的自适应攻击来训练阴影和攻击模型,以改善攻击性能。
translated by 谷歌翻译