In addition to its public health crisis, COVID-19 pandemic has led to the shutdown and closure of workplaces with an estimated total cost of more than $16 trillion. Given the long hours an average person spends in buildings and indoor environments, this research article proposes data-driven control strategies to design optimal indoor airflow to minimize the exposure of occupants to viral pathogens in built environments. A general control framework is put forward for designing an optimal velocity field and proximal policy optimization, a reinforcement learning algorithm is employed to solve the control problem in a data-driven fashion. The same framework is used for optimal placement of disinfectants to neutralize the viral pathogens as an alternative to the airflow design when the latter is practically infeasible or hard to implement. We show, via simulation experiments, that the control agent learns the optimal policy in both scenarios within a reasonable time. The proposed data-driven control framework in this study will have significant societal and economic benefits by setting the foundation for an improved methodology in designing case-specific infection control guidelines that can be realized by affordable ventilation devices and disinfectants.
translated by 谷歌翻译
我们提出了一个无模型增强学习(RL)框架的案例研究,以解决预定义参数不确定性分布和部分可观察到的随机最佳控制。我们专注于强大的最佳井控制问题,这是地下储层管理领域的密集研究活动的主题。对于此问题,由于数据仅在井位置可用,因此部分观察到系统。此外,由于可用字段数据的稀疏性,模型参数高度不确定。原则上,RL算法能够学习最佳动作策略(从状态到动作的地图),以最大程度地提高数值奖励信号。在Deep RL中,使用深神经网络对从状态到动作进行参数化的映射是参数化的。在强大的最佳井控制问题的RL公式中,状态由井位的饱和度和压力值表示,而动作代表控制通过井流的阀门开口。数值奖励是指总扫描效率,不确定的模型参数是地下渗透率场。通过引入域随机化方案来处理模型参数不确定性,该方案利用群集分析其不确定性分布。我们使用两种最先进的RL算法,近端策略优化(PPO)和Advantage Actor-Critic(A2C)提出数值结果,这些结果是在两个地下流量测试用例上,这些算法代表了两个不同的不确定性分布的渗透率场。根据使用差分进化算法获得的优化结果对结果进行了测试。此外,我们通过评估从训练过程中未使用的参数不确定性分布中得出的看不见的样本中学习的控制策略,证明了对RL的鲁棒性。
translated by 谷歌翻译
Machine learning frameworks such as Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control. This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques such as Bayesian Optimization (BO) and Lipschitz global optimization (LIPO). First, we review the general framework of the model-free control problem, bringing together all methods as black-box optimization problems. Then, we test the control algorithms on three test cases. These are (1) the stabilization of a nonlinear dynamical system featuring frequency cross-talk, (2) the wave cancellation from a Burgers' flow and (3) the drag reduction in a cylinder wake flow. We present a comprehensive comparison to illustrate their differences in exploration versus exploitation and their balance between `model capacity' in the control law definition versus `required complexity'. We believe that such a comparison paves the way toward the hybridization of the various methods, and we offer some perspective on their future development in the literature on flow control problems.
translated by 谷歌翻译
增强学习(RL)是解决模型参数高度不确定的强大最佳井控制问题的有前途的工具,并且在实践中可以部分观察到系统。但是,强大的控制策略的RL通常依赖于进行大量模拟。对于具有计算密集型模拟的案例,这很容易成为计算上的棘手。为了解决这个瓶颈,引入了自适应多网格RL框架,该框架的灵感来自迭代数值算法中使用的几何多机方法原理。最初,使用基础偏微分方程(PDE)的粗电网离散化(PDE)的粗网格离散化,使用计算有效的低忠诚度模拟来学习RL控制策略。随后,模拟保真度以适应性的方式增加了对相当于模型域最优秀的最高忠诚度模拟。提出的框架使用最先进的基于策略的RL算法,即近端策略优化(PPO)算法证明。结果显示了两项案例研究的结果,该研究是由SPE-10模型2基准案例研究启发的强大最佳井控制问题。使用所提出的框架节省了其单个细网格对应物的计算成本的60-70%,可以观察到计算效率的显着提高。
translated by 谷歌翻译
计算物理问题问题的有限元离散通常依赖于自适应网格细化(AMR)来优先解决模拟过程中包含重要特征的区域。但是,这些空间改进策略通常是启发式的,并且依靠特定领域的知识或反复试验。我们将自适应网状精炼的过程视为不完整的信息下的本地,顺序决策问题,将AMR作为部分可观察到的马尔可夫决策过程。使用深厚的增强学习方法,我们直接从数值模拟中训练政策网络为AMR策略训练。培训过程不需要精确的解决方案或手头部分微分方程的高保真地面真相,也不需要预先计算的培训数据集。我们强化学习公式的本地性质使政策网络可以廉价地培训比部署的问题要小得多。该方法不是特定于任何特定的部分微分方程,问题维度或数值离散化的特定,并且可以灵活地结合各种问题物理。为此,我们使用各种高阶不连续的Galerkin和杂交不连续的Galerkin有限元离散化,将方法应用于各种偏微分方程。我们表明,由此产生的深入强化学习政策与共同的AMR启发式方法具有竞争力,跨越问题类别概括,并在准确性和成本之间取得了有利的平衡,因此它们通常会导致每个问题自由度的准确性更高。
translated by 谷歌翻译
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to attain the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one. To avoid these deviations, the shape of the die can be computationally optimized, which has already been investigated in the literature using classical optimization approaches. A new approach in the field of shape optimization is the utilization of Reinforcement Learning (RL) as a learning-based optimization algorithm. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment. While not necessarily superior to classical, e.g., gradient-based or evolutionary, optimization algorithms for one single problem, RL techniques are expected to perform especially well when similar optimization tasks are repeated since the agent learns a more general strategy for generating optimal shapes instead of concentrating on just one single problem. In this work, we investigate this approach by applying it to two 2D test cases. The flow-channel geometry can be modified by the RL agent using so-called Free-Form Deformation, a method where the computational mesh is embedded into a transformation spline, which is then manipulated based on the control-point positions. In particular, we investigate the impact of utilizing different agents on the training progress and the potential of wall time saving by utilizing multiple environments during training.
translated by 谷歌翻译
在许多领域,例如物理科学,生命科学和金融,控制方法用于在差分方程治理的复杂动态系统中实现所需目标。在这项工作中,我们制定了控制随机部分微分方程(SPDE)作为加强学习问题的问题。我们介绍了一种基于学习的,分布式控制方法,用于使用深度确定性政策梯度方法对具有高维状态动作空间的SPDES系统的在线控制。我们测试了我们对控制随机汉堡等方程问题的方法的性能,描述了无限大域的湍流流体流动。
translated by 谷歌翻译
Compared with model-based control and optimization methods, reinforcement learning (RL) provides a data-driven, learning-based framework to formulate and solve sequential decision-making problems. The RL framework has become promising due to largely improved data availability and computing power in the aviation industry. Many aviation-based applications can be formulated or treated as sequential decision-making problems. Some of them are offline planning problems, while others need to be solved online and are safety-critical. In this survey paper, we first describe standard RL formulations and solutions. Then we survey the landscape of existing RL-based applications in aviation. Finally, we summarize the paper, identify the technical gaps, and suggest future directions of RL research in aviation.
translated by 谷歌翻译
在过去的几年中,有监督的学习(SL)已确立了自己的最新数据驱动湍流建模。在SL范式中,基于数据集对模型进行了训练,该数据集通常通过应用相应的滤波器函数来从高保真解决方案中计算出先验的模型,该函数将已分离的和未分辨的流量尺度分开。对于隐式过滤的大涡模拟(LES),此方法是不可行的,因为在这里,使用的离散化本身是隐式滤波器函数。因此,通常不知道确切的滤波器形式,因此,即使有完整的解决方案可用,也无法计算相应的闭合项。强化学习(RL)范式可用于避免通过先前获得的培训数据集训练,而是通过直接与动态LES环境本身进行交互来避免这种不一致。这允许通过设计将潜在复杂的隐式LES过滤器纳入训练过程中。在这项工作中,我们应用了一个增强学习框架,以找到最佳的涡流粘度,以隐式过滤强制均匀的各向同性湍流的大型涡流模拟。为此,我们将基于卷积神经网络的策略网络制定湍流建模的任务作为RL任务,该杂志神经网络仅基于局部流量状态在时空中动态地适应LES中的涡流效率。我们证明,受过训练的模型可以提供长期稳定的模拟,并且在准确性方面,它们的表现优于建立的分析模型。此外,这些模型可以很好地推广到其他决议和离散化。因此,我们证明RL可以为一致,准确和稳定的湍流建模提供一个框架,尤其是对于隐式过滤的LE。
translated by 谷歌翻译
With the growing need to reduce energy consumption and greenhouse gas emissions, Eco-driving strategies provide a significant opportunity for additional fuel savings on top of other technological solutions being pursued in the transportation sector. In this paper, a model-free deep reinforcement learning (RL) control agent is proposed for active Eco-driving assistance that trades-off fuel consumption against other driver-accommodation objectives, and learns optimal traction torque and transmission shifting policies from experience. The training scheme for the proposed RL agent uses an off-policy actor-critic architecture that iteratively does policy evaluation with a multi-step return and policy improvement with the maximum posteriori policy optimization algorithm for hybrid action spaces. The proposed Eco-driving RL agent is implemented on a commercial vehicle in car following traffic. It shows superior performance in minimizing fuel consumption compared to a baseline controller that has full knowledge of fuel-efficiency tables.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Covid-19疫苗是我们最好的赌注,用于减轻大流行的持续冲击。但是,疫苗也预计将是有限的资源。最佳分配策略,特别是在具有访问不公平的国家和热点的时间分离,可能是停留疾病传播的有效方式。我们通过提出一种新的管道VACSIM来实现这个问题,将深度加强学习模型延装到用于优化Covid-19疫苗的分布的上下文的匪徒方法中。虽然加强学习模型建议了更好的行动和奖励,但上下文匪徒允许在现实世界场景中每天到日常实施的在线修改。我们评估此框架,防止与印度五个不同状态的Covid-19案例发生比例分配疫苗的天真分配方法(Assam,Delhi,Jharkhand,Maharashtra和Nagaland),并展示高达9039潜力的潜在感染,并增加了显着增加在通过VacSim方法的45天内限制差异的疗效。我们的型号和平台对印度所有国家和潜在的全球范围内都是可扩张的。我们还提出了新的评估策略,包括标准的基于区间模型的预测和对我们模型的因果关系评估。由于所有模型都携带可能需要在各种情况下进行测试的假设,因此我们开源我们的模型Vackim并贡献了与Openai健身房兼容的新型加固学习环境,以使其在全球的现实世界应用中可扩展。 (http://vacsim.tavlab.iiitd.edu.in:8000/)。
translated by 谷歌翻译
我们考虑在一个有限时间范围内的离散时间随机动力系统的联合设计和控制。我们将问题作为一个多步优化问题,在寻求识别系统设计和控制政策的不确定性下,共同最大化所考虑的时间范围内收集的预期奖励总和。转换函数,奖励函数和策略都是参数化的,假设与其参数有所不同。然后,我们引入了一种深度加强学习算法,将策略梯度方法与基于模型的优化技术相结合以解决这个问题。从本质上讲,我们的算法迭代地估计通过Monte-Carlo采样和自动分化的预期返回的梯度,并在环境和策略参数空间中投影梯度上升步骤。该算法称为直接环境和策略搜索(DEPS)。我们评估我们算法在三个环境中的性能,分别在三种环境中进行了一个群众弹簧阻尼系统的设计和控制,分别小型离网电力系统和无人机。此外,我们的算法是针对用于解决联合设计和控制问题的最先进的深增强学习算法的基准测试。我们表明,在所有三种环境中,DEPS至少在或更好地执行,始终如一地产生更高的迭代返回的解决方案。最后,通过我们的算法产生的解决方案也与由算法产生的解决方案相比,不共同优化环境和策略参数,突出显示在执行联合优化时可以实现更高返回的事实。
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
大型人口系统的分析和控制对研究和工程的各个领域引起了极大的兴趣,从机器人群的流行病学到经济学和金融。一种越来越流行和有效的方法来实现多代理系统中的顺序决策,这是通过多机构增强学习,因为它允许对高度复杂的系统进行自动和无模型的分析。但是,可伸缩性的关键问题使控制和增强学习算法的设计变得复杂,尤其是在具有大量代理的系统中。尽管强化学习在许多情况下都发现了经验成功,但许多代理商的问题很快就变得棘手了,需要特别考虑。在这项调查中,我们将阐明当前的方法,以通过多代理强化学习以及通过诸如平均场游戏,集体智能或复杂的网络理论等研究领域进行仔细理解和分析大型人口系统。这些经典独立的主题领域提供了多种理解或建模大型人口系统的方法,这可能非常适合将来的可拖动MARL算法制定。最后,我们调查了大规模控制的潜在应用领域,并确定了实用系统中学习算法的富有成果的未来应用。我们希望我们的调查可以为理论和应用科学的初级和高级研究人员提供洞察力和未来的方向。
translated by 谷歌翻译
在过去的几十年中,车辆的升级和更新加速了。出于对环境友好和情报的需求,电动汽车(EV)以及连接和自动化的车辆(CAVS)已成为运输系统的新组成部分。本文开发了一个增强学习框架,以在信号交叉点上对由骑士和人类驱动车辆(HDV)组成的电力排实施自适应控制。首先,提出了马尔可夫决策过程(MDP)模型来描述混合排的决策过程。新颖的状态表示和奖励功能是为模型设计的,以考虑整个排的行为。其次,为了处理延迟的奖励,提出了增强的随机搜索(ARS)算法。代理商所学到的控制政策可以指导骑士的纵向运动,后者是排的领导者。最后,在模拟套件相扑中进行了一系列模拟。与几种最先进的(SOTA)强化学习方法相比,提出的方法可以获得更高的奖励。同时,仿真结果证明了延迟奖励的有效性,延迟奖励的有效性均优于分布式奖励机制}与正常的汽车跟随行为相比,灵敏度分析表明,可以将能量保存到不同的扩展(39.27%-82.51%))通过调整优化目标的相对重要性。在没有牺牲行进延迟的前提下,建议的控制方法可以节省多达53.64%的电能。
translated by 谷歌翻译
传统的生物和制药工厂由人类工人或预定义阈值控制。现代化的工厂具有高级过程控制算法,例如模型预测控制(MPC)。但是,几乎没有探索将深入的增强学习来控制制造厂。原因之一是缺乏高保真模拟和基准测试的标准API。为了弥合这一差距,我们开发了一个易于使用的库,其中包括五个高保真模拟环境:BeerfMtenV,Reactorenv,Atropineenv,Pensimenv和Mabenv,涵盖了广泛的制造过程。我们在已发布的动态模型上构建这些环境。此外,我们在线和离线基准基准,基于模型和无模型的强化学习算法,用于比较后续研究。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译