使用对比度学习从头开始对齐图像和文本编码需要大量配对的图像文本数据。我们通过使用少量的配对数据来对齐单独训练的语言和视觉表示模型来减轻这种需求,并使用课程学习算法增强以学习细粒度的视觉语言对准。Tonics(接受本体知识的对比度采样的培训)最初是样品小匹配的样品,其图像文本对包含各种各样的对象来学习对象级别的对齐,并逐渐将所有图像文本对都包含相同的对象来学习相同的对象,以学习相同的对象上下文对齐。使用吨位将预先训练的BERT和VINVL模型对准彼此的模型优于下游零拍图像检索上的剪辑,同时使用少于1%的训练数据。
translated by 谷歌翻译
我们提出了Clip-Lite,一种通过与文本注释的特征对齐方式进行视觉表示学习的信息有效方法。与先前提出的剪辑模型相比,剪辑液在优化其对比学学习目标期间只需要一个负图像文本样本对。我们通过利用信息有效的较低限制来实现这一点,以最大化两个输入模态之间的相互信息。这允许剪辑Lite培训,在获得比夹子的更好的性能的同时具有显着减少的数据和批量尺寸。我们通过在Coco-Tablions数据集上预先绘制来评估剪贴画并对其他数据集进行测试传输。 Clip-Lite在Pascal VOC分类上获得+ 15.4%的映射绝对增益,并在ImageNet上获得A + 22.1%的前1个精度增益,同时与其他更复杂,文本监督模型相当或优越。 Clip-Lite还优于剪辑图像和文本检索,零拍分类和视觉接地。最后,通过在表示学习期间执行显式图像文本对齐,我们显示Clip-Lite可以利用语言语义来鼓励可以在下游任务中使用的无偏见的视觉表示。
translated by 谷歌翻译
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as Ima-geNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated crossattention models. The representations also enable cross-modality search with complex text and text + image queries.
translated by 谷歌翻译
在本文中,我们研究了如何在视觉和语言(V+L)表示学习中使用蒙版的信号建模。与其独立开发蒙面语言建模(MLM)和蒙面图像建模(MIM),我们建议建立关节蒙面的视觉和语言建模,其中一种模态的掩盖信号是在另一种方式的帮助下重建的。这是由图像文本配对数据的性质和文本传达几乎相同的信息但以不同格式传达的。在另一种模态下进行的一种模式的掩盖信号重建也可以隐式学习语言令牌和图像贴片之间的跨模式对齐。我们对各种V+L任务的实验表明,该建议的方法不仅可以通过使用大量数据来实现最先进的性能,而且还可以通过有限的培训数据的制度优于其他竞争对手。
translated by 谷歌翻译
Large-scale cross-modal pre-training paradigms have recently shown ubiquitous success on a wide range of downstream tasks, e.g., zero-shot classification, retrieval and image captioning. However, their successes highly rely on the scale and quality of web-crawled data that naturally contain incomplete and noisy information (e.g., wrong or irrelevant content). Existing works either design manual rules to clean data or generate pseudo-targets as auxiliary signals for reducing noise impact, which do not explicitly tackle both the incorrect and incomplete challenges simultaneously. In this paper, to automatically mitigate the impact of noise by solely mining over existing data, we propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion. First, in noise-harmonization scheme, NLIP estimates the noise probability of each pair according to the memorization effect of cross-modal transformers, then adopts noise-adaptive regularization to harmonize the cross-modal alignments with varying degrees. Second, in noise-completion scheme, to enrich the missing object information of text, NLIP injects a concept-conditioned cross-modal decoder to obtain semantic-consistent synthetic captions to complete noisy ones, which uses the retrieved visual concepts (i.e., objects' names) for the corresponding image to guide captioning generation. By collaboratively optimizing noise-harmonization and noise-completion schemes, our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way. Extensive experiments show the significant performance improvements of our NLIP using only 26M data over existing pre-trained models (e.g., CLIP, FILIP and BLIP) on 12 zero-shot classification datasets, MSCOCO image captioning and zero-shot image-text retrieval tasks.
translated by 谷歌翻译
最先进的愿景和愿景和语言模型依靠大规模的Visio-linguisting预借鉴,以获得各种下游任务的良好性能。通常,这种模型通常是跨模态(对比)或多模态(具有早期融合)但不是两者;它们通常只针对特定的方式或任务。有希望的方向将是使用单一整体普遍模型,作为“基础”,目标是一次性的所有方式 - 真正的视觉和语言基础模型应该擅长视力任务,语言任务和交叉和多数模态视觉和语言任务。我们将Flava介绍在这样的模型中,并在跨越这些目标模式的广泛的35个任务上展示令人印象深刻的性能。
translated by 谷歌翻译
Learning fine-grained interplay between vision and language allows to a more accurate understanding for VisionLanguage tasks. However, it remains challenging to extract key image regions according to the texts for semantic alignments. Most existing works are either limited by textagnostic and redundant regions obtained with the frozen detectors, or failing to scale further due to its heavy reliance on scarce grounding (gold) data to pre-train detectors. To solve these problems, we propose Self-Locator Aided Network (SLAN) for cross-modal understanding tasks without any extra gold data. SLAN consists of a region filter and a region adaptor to localize regions of interest conditioned on different texts. By aggregating cross-modal information, the region filter selects key regions and the region adaptor updates their coordinates with text guidance. With detailed region-word alignments, SLAN can be easily generalized to many downstream tasks. It achieves fairly competitive results on five cross-modal understanding tasks (e.g., 85.7% and 69.2% on COCO image-to-text and text-to-image retrieval, surpassing previous SOTA methods). SLAN also demonstrates strong zero-shot and fine-tuned transferability to two localization tasks.
translated by 谷歌翻译
使用自然语言作为培训视觉识别模型的监督持有巨大的承诺。最近的作品表明,如果在大型训练数据集中的图像和标题之间的对齐形式使用此类监督,则结果对齐模型在零拍摄分类中表现出色,如下游任务2。在本文中,我们专注于挑逗语言监督的哪些部分对于训练零拍摄图像分类模型至关重要。通过广泛和仔细的实验​​,我们表明:1)可以将简单的单词(弓)标题用作数据集中大多数图像标题的替代品。令人惊讶的是,我们观察到这种方法在与单词平衡结合时提高了零拍分类性能。 2)使用船首净化模型,我们可以通过在没有标题的图像上生成伪弓标题来获得更多培训数据。使用真实和伪弓形标题培训的模型达到了更强的零射性能。在ImageNet-1K零拍评估中,我们只使用3M图像标题对的最佳模型,使用15M图像标题对培训的剪辑模型(31.5%VS 31.3%)进行剪辑。
translated by 谷歌翻译
现有视觉语言预训练(VLP)方法主要依赖于配对的图像文本数据集,这些数据集由大量人类劳动注释,或者从互联网上爬行,然后是精心制作的数据清洁技术。为了减少对良好的图像文本对的依赖,有望直接利用仅大规模的仅文本和仅图像的语料库。本文提出了一种数据增强方法,即跨模式cutmix(CMC),用于在未配对的VLP中进行隐式跨模式对齐学习。具体而言,CMC将自然句子从文本视图转换为多模式视图,在该视图中,句子中的视觉词语单词被带有相似语义的各种图像贴片随机替换。拟议中的CMC有几个吸引人的礼节。首先,它增强了数据多样性,同时保持语义含义完好无损地解决了对齐数据稀缺的问题;其次,通过将跨模式噪声连接到单模式数据上,它指导模型以学习跨模态的令牌级相互作用,以更好地降级。此外,我们提出了一种名为VLMIXER的新的未配对VLP方法,该方法将CMC与对比度学习集成在一起,以将Uni-Mododal和多模式视图汇总在一起,以在不同模式之间进行更好的实例级别对齐。在五个下游任务上进行的广泛实验表明,VLMIXER可以超过以前最先进的未配对VLP方法。
translated by 谷歌翻译
Vision语言中最现有的方法依赖于通过对象检测提取的对象中心特征,并在提取的功能和文本之间进行细粒度对齐。我们认为物体检测的使用可能不适合视觉语言预培训。相反,我们指出应该执行任务,以便文本中提到的“视觉概念”的区域位于图像中,并且在文本和视觉概念之间的平时对齐中,识别在其中的校准处于多个 - 粒度。本文提出了一种称为X-VLM的新方法,以执行“多粒度的视觉语言预训练”。实验结果表明,X-VLM在许多下游视觉语言任务中始终如一地优于最先进的方法。
translated by 谷歌翻译
开创性双编码器预训练工作(例如,剪辑并对齐)揭示了与对比学习对齐多模态表示的潜力。然而,这些作品需要大量的数据和计算资源(例如,十亿级Web数据和数百个GPU),这阻止了从再生产和进一步探索的资源有限的研究人员。为此,我们探讨了一堆简单但有效的启发式,并提供了全面的培训指导,使我们能够与有限的资源进行双编码器多模态表示对齐。我们为竞争结果提供可重复的强大基线,即Zerovl,只有1400万公共访问的学术数据集和8 v100 GPU。此外,我们收集100米Web数据进行预培训,而不是最先进的方法实现可比或优越的结果,进一步证明了我们对大规模数据的方法的有效性。我们希望这项工作将为多模态预培训的未来研究提供有用的数据点和经验。我们的代码和预先训练的型号将被释放,以促进研究界。
translated by 谷歌翻译
In the field of cross-modal retrieval, single encoder models tend to perform better than dual encoder models, but they suffer from high latency and low throughput. In this paper, we present a dual encoder model called BagFormer that utilizes a cross modal interaction mechanism to improve recall performance without sacrificing latency and throughput. BagFormer achieves this through the use of bag-wise interactions, which allow for the transformation of text to a more appropriate granularity and the incorporation of entity knowledge into the model. Our experiments demonstrate that BagFormer is able to achieve results comparable to state-of-the-art single encoder models in cross-modal retrieval tasks, while also offering efficient training and inference with 20.72 times lower latency and 25.74 times higher throughput.
translated by 谷歌翻译
远见和语言预测已成为解决多模式下游任务的普遍方法。当前的趋势是朝着更大的模型和预处理数据集迈进。从长远来看,这一计算头急促似乎是不合理的,而是朝着可持续的解决方案迈进,事实上,排除了资源有限的学术实验室。在这项工作中,我们提出了一个称为VICHA的新框架,该框架有效利用输入数据以通过以下方式提高学习,以: ,(c)利用图像级注释,称为视觉概念,使用现有基础模型(例如剪辑)获得,以提高图像编码器的性能。尽管对数据的预估计少了四倍,但我们的VICHA策略在下游任务(例如图像文本检索,VQA,视觉推理,视觉上和视觉接地)上的其他方法优于其他方法。该代码将在此处公开提供:https://github.com/mshukor/vicha
translated by 谷歌翻译
具有大尺度图像文本对的视觉预训练(VLP)在各个领域都表现出卓越的性能。但是,Internet上的图像文本对共存通常缺乏明确的对齐信息,这对于VLP来说是次优的。建议采用现成的对象检测器来利用其他图像标签信息。但是,对象检测器是耗时的,只能识别预定义的对象类别,从而限制了模型容量。受到观察的启发,即文本包含不完整的细粒图像信息,我们介绍了Ideas,该想法代表通过在线多标签识别VLP来增加文本多样性。想法表明,可以在VLP期间共同优化从文本中提取的图像标签的多标签学习。此外,想法可以在线识别有价值的图像标签,以提供更明确的文本监督。全面的实验表明,想法可以显着提高多个下游数据集上的性能,并具有较小的额外计算成本。
translated by 谷歌翻译
传统的计算机视觉模型受过培训,以预测固定的预定义类别。最近,自然语言已被证明是一个更广泛而更丰富的监督来源,为视觉概念提供更精细的描述,而不是监督“黄金”标签。以前的作品,例如剪辑,使用InfoNce丢失来训练模型以预测图像和文本标题之间的配对。然而,剪辑是饥饿的数据,需要超过400米的图像文本对进行培训。效率低下可以归因于图像文本对嘈杂的事实。为了解决这个问题,我们提出了水獭(有效的零射击识别的最佳运输蒸馏),它使用在线熵最佳运输,找到一个软图像文本与标签进行对比学习。基于预磨料的图像和文本编码器,用电站培训的型号实现了强大的性能,只有3M图像文本对。与InfoNce损失相比,标记平滑和知识蒸馏,OTTER始终如一地优于零拍摄图像(19,958类)和来自腾讯ML图像的多标记Imagenet 10k(10032类)的零拍摄评估中的这些基线。在4个不同的数据集/架构设置x 6度量上,OTTER优于(32)或绑定(2)34中的所有基准。
translated by 谷歌翻译
The understanding capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of image, text, and 3D point cloud by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification and zero-shot 3D classification on ModelNet40 and ScanObjectNN. ULIP also improves the performance of PointMLP by around 3% in 3D classification on ScanObjectNN, and outperforms PointCLIP by 28.8% on top-1 accuracy for zero-shot 3D classification on ModelNet40. Our code and pre-trained models will be released.
translated by 谷歌翻译
从纯图像和具有对比性损失的纯图像和文本预测的自我监督的视觉语言是有效的,但是由于双流式体系结构仅在全球层面上与图像和文本表示形式对齐,因此忽略了细粒度​​的对齐。早些时候,受监督的,非对比度的方法具有更细粒度的对齐方式,但需要致密的注释,这些注释不可伸缩。我们提出了一个单个流体系结构,该体系结构使用两个新颖的任务:对称交叉模式重建(XMM)和一个伪标记的关键字预测,将图像和语言对齐:全局,细粒度的补丁和概念/语义(PSL)。在XMM中,我们从一种模态掩盖了输入令牌,并使用跨模式信息重建掩盖的令牌,从而改善了两种模式之间的细粒度对齐。在PSL中,我们使用注意力在标题中选择关键字,使用动量编码器推荐标题中缺少但在图像中表示的其他重要关键字,然后训练视觉编码器以预测这些关键字的存在,并帮助它。学习对于将文本令牌接地到图像区域至关重要的语义概念。我们证明了对图像文本检索,接地,视觉问题的回答/推理的竞争性能和提高的数据效率,以针对对更多数据进行培训的较大模型和模型。 Zaidkhan.me/simla上可用的代码和型号。
translated by 谷歌翻译
视频和语言预培训表明对各种下游任务有望改善。最先前的方法捕获与基于变换器的多模式编码器的跨模型交互,不完全解决单向视频和文本特征之间的错位。此外,学习细粒度的视觉语言对准通常需要离上的对象检测器来提供对象信息,这是由检测器有限的词汇和昂贵的计算成本的瓶颈。我们建议对齐和提示:一种高效有效的视频和语言预训练框架,具有更好的跨模型对齐。首先,我们介绍了一个视频文本对比(VTC)丢失,以对准实例级别的单峰视频文本功能,从而缓解跨模型交互的建模。然后,我们提出了一种新的视觉接地预训练任务,提示实体建模(PEM),旨在学习细粒度的区域实体对齐。为实现这一目标,我们首先介绍一个实体发射模块,该模块用VTC培训,以产生与实体名称实例化的视频裁剪和文本提示之间的相似性。 PEM任务然后询问模型以预测随机选择的视频作物的实体伪标签(I.E〜归一化相似度分数)。由此产生的预先训练的模型在文本 - 视频检索和VideoQ上实现了最先进的性能,通过大幅度的边距表现优于现有的工作。我们的代码和预先训练的型号将被释放。
translated by 谷歌翻译
Vision-and-Language Pre-training (VLP) has improved performance on various joint vision-andlanguage downstream tasks. Current approaches to VLP heavily rely on image feature extraction processes, most of which involve region supervision (e.g., object detection) and the convolutional architecture (e.g., ResNet). Although disregarded in the literature, we find it problematic in terms of both (1) efficiency/speed, that simply extracting input features requires much more computation than the multimodal interaction steps; and (2) expressive power, as it is upper bounded to the expressive power of the visual embedder and its predefined visual vocabulary. In this paper, we present a minimal VLP model, Vision-and-Language Transformer (ViLT), monolithic in the sense that the processing of visual inputs is drastically simplified to just the same convolution-free manner that we process textual inputs. We show that ViLT is up to tens of times faster than previous VLP models, yet with competitive or better downstream task performance. Our code and pre-trained weights are available at https://github.com/dandelin/vilt.
translated by 谷歌翻译
Large-scale vision and language representation learning has shown promising improvements on various vision-language tasks. Most existing methods employ a transformer-based multimodal encoder to jointly model visual tokens (region-based image features) and word tokens. Because the visual tokens and word tokens are unaligned, it is challenging for the multimodal encoder to learn image-text interactions. In this paper, we introduce a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. Unlike most existing methods, our method does not require bounding box annotations nor high-resolution images. To improve learning from noisy web data, we propose momentum distillation, a self-training method which learns from pseudo-targets produced by a momentum model. We provide a theoretical analysis of ALBEF from a mutual information maximization perspective, showing that different training tasks can be interpreted as different ways to generate views for an image-text pair. ALBEF achieves state-of-the-art performance on multiple downstream visionlanguage tasks. On image-text retrieval, ALBEF outperforms methods that are pre-trained on orders of magnitude larger datasets. On VQA and NLVR 2 , ALBEF achieves absolute improvements of 2.37% and 3.84% compared to the state-ofthe-art, while enjoying faster inference speed. Code and models are available at https://github.com/salesforce/ALBEF.
translated by 谷歌翻译