近年来,在数字病理应用中,在研究和临床环境中越来越普遍的部署这些模型的部署证明了在数字病理应用中的深度学习模型的开发方面取得了巨大进步。尽管此类模型在解决DP应用程序中的基本计算任务方面表现出了前所未有的表现,但在适应转移学习的看不见数据时,它们会遭受灾难性的遗忘。随着对深度学习模型的需求越来越多地处理不断变化的数据分布,包括不断发展的患者人群和新的诊断测定法,持续的学习模型减轻了模型忘记的遗忘,需要在基于DP的分析中引入。但是,据我们所知,没有针对DP特定应用的此类模型的系统研究。在这里,我们提出了DP设置中的CL方案,其中的组织病理学图像数据来自不同来源/分布,其知识已集成到单个模型中,而无需从头开始训练所有数据。然后,我们建立了一个用于结直肠癌H&E分类的增强数据集,以模拟图像外观的变化,并在拟议的CL方案中评估了CL模型性能。我们利用乳腺肿瘤H&E数据集以及结直肠癌来评估不同肿瘤类型的CL。此外,我们在注释和计算资源的限制下在在线几弹性设置中评估了CL方法。我们揭示了DP应用中CL的有希望的结果,这可能为这些方法在临床实践中的应用铺平了道路。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
持续学习(CL)旨在开发单一模型适应越来越多的任务的技术,从而潜在地利用跨任务的学习以资源有效的方式。 CL系统的主要挑战是灾难性的遗忘,在学习新任务时忘记了早期的任务。为了解决此问题,基于重播的CL方法在遇到遇到任务中选择的小缓冲区中维护和重复培训。我们提出梯度Coreset重放(GCR),一种新颖的重播缓冲区选择和使用仔细设计的优化标准的更新策略。具体而言,我们选择并维护一个“Coreset”,其与迄今为止关于当前模型参数的所有数据的梯度紧密近似,并讨论其有效应用于持续学习设置所需的关键策略。在学习的离线持续学习环境中,我们在最先进的最先进的最先进的持续学习环境中表现出显着的收益(2%-4%)。我们的调查结果还有效地转移到在线/流媒体CL设置,从而显示现有方法的5%。最后,我们展示了持续学习的监督对比损失的价值,当与我们的子集选择策略相结合时,累计增益高达5%。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
古典机器学习者仅设计用于解决一项任务,而无需采用新的新兴任务或课程,而这种能力在现实世界中更实用和人类。为了解决这种缺点,阐述了持续的机器学习者,以表彰使用域和班级的任务流,不同的任务之间的转变。在本文中,我们提出了一种基于一个基于对比的连续学习方法,其能够处理多个持续学习场景。具体地,我们通过特征传播和对比表示学习来对准当前和先前的表示空间来弥合不同任务之间的域移位。为了进一步减轻特征表示的类别的班次,利用了监督的对比损失以使与不同类别的相同类的示例嵌入。广泛的实验结果表明,与一组尖端连续学习方法相比,六个连续学习基准中提出的方法的出色性能。
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
持续学习(CL)旨在从依次到达的任务中学习,而无需忘记以前的任务。尽管CL算法试图在到目前为止所学的所有任务中实现更高的平均测试准确性,但学习对成功的概括和下游转移至关重要。为了衡量代表性质量,我们仅使用一个小平衡数据集对所有任务进行重新培训,从而评估平均准确性,而无需对当前任务进行任何偏见的预测。我们还测试了几个下游任务,测量了学习表示的转移学习准确性。通过测试我们在Imagenet-100和Imagenet-1000上的新形式主义,我们发现使用更多的示例记忆是在学习的表示形式中产生有意义差异的唯一选择,以及大多数基于正则化或蒸馏的CL算法,都使用了示例记忆无法在课堂学习学习中学习不断有用的表示。令人惊讶的是,具有足够记忆大小的无监督(或自制的)CL可以达到与受监督对应物相当的性能。考虑到非平凡的标签成本,我们声称找到更有效的无监督CL算法,这些算法最少使用示例性记忆将是CL研究的下一个有希望的方向。
translated by 谷歌翻译
一组复杂的机制促进了大脑中的持续学习(CL)。这包括用于整合信息的多个内存系统的相互作用,如互补学习系统(CLS)理论和突触巩固,以保护获得的知识免受擦除。因此,我们提出了一种通用CL方法,该方法在突触巩固和双重记忆体验重播(Synergy)之间产生协同作用。我们的方法保持语义记忆,该记忆积累并巩固了整个任务中的信息,并与情节内存进行交互以有效重播。它通过跟踪训练轨迹期间参数的重要性并将其固定在语义内存中的巩固参数中,进一步采用了突触巩固。据我们所知,我们的研究是第一个与突触合并一起使用双重记忆体验重播的,该合并适用于一般CL,网络在培训或推理过程中不利用任务边界或任务标签。我们对各种具有挑战性的CL情景和特征分析的评估表明,将突触巩固和CLS理论纳入启用DNN中的有效CL的功效。
translated by 谷歌翻译
我们探索无任务持续学习(CL),其中培训模型以避免在没有明确的任务边界或身份的情况下造成灾难性的遗忘。在无任务CL上的许多努力中,一个值得注意的方法是基于内存的,存储和重放训练示例的子集。然而,由于CL模型不断更新,所以存储的示例的效用可以随时间缩短。这里,我们提出基于梯度的存储器编辑(GMED),该框架是通过梯度更新在连续输入空间中编辑存储的示例的框架,以便为重放创建更多的“具有挑战性”示例。 GMED编辑的例子仍然类似于其未编辑的形式,但可以在即将到来的模型更新中产生增加的损失,从而使未来的重播在克服灾难性遗忘方面更有效。通过施工,GMED可以与其他基于内存的CL算法一起无缝应用,以进一步改进。实验验证了GMED的有效性,以及我们最好的方法显着优于基线和以前的五个数据集中的最先进。可以在https://github.com/ink-usc/gmed找到代码。
translated by 谷歌翻译
持续学习(CL)旨在制定模仿人类能力顺序学习新任务的能力,同时能够保留从过去经验获得的知识。在本文中,我们介绍了内存约束在线连续学习(MC-OCL)的新问题,这对存储器开销对可能算法可以用于避免灾难性遗忘的记忆开销。最多,如果不是全部,之前的CL方法违反了这些约束,我们向MC-OCL提出了一种算法解决方案:批量蒸馏(BLD),基于正则化的CL方法,有效地平衡了稳定性和可塑性,以便学习数据流,同时保留通过蒸馏解决旧任务的能力。我们在三个公开的基准测试中进行了广泛的实验评估,经验证明我们的方法成功地解决了MC-OCL问题,并实现了需要更高内存开销的先前蒸馏方法的可比准确性。
translated by 谷歌翻译
持续学习(CL)调查如何在无需遗忘的情况下培训在任务流上的深网络。文献中提出的CL设置假设每个传入示例都与地面真实注释配对。然而,这与许多真实应用的冲突这项工作探讨了持续的半监督学习(CSSL):这里只有一小部分标记的输入示例显示给学习者。我们评估当前CL方法(例如:EWC,LWF,Icarl,ER,GDumb,Der)在这部小说和具有挑战性的情况下,过度装箱纠缠忘记。随后,我们设计了一种新的CSSL方法,用于在学习时利用度量学习和一致性正则化来利用未标记的示例。我们展示我们的提案对监督越来越令人惊讶的是,我们的提案呈现出更高的恢复能力,甚至更令人惊讶地,仅依赖于25%的监督,以满足全面监督培训的优于营业型SOTA方法。
translated by 谷歌翻译
人的大脑能够依次地学习任务,而无需忘记。但是,深度神经网络(DNN)在学习一项任务时遭受灾难性遗忘。我们考虑了一个挑战,考虑了一个课堂学习方案,在该方案中,DNN看到测试数据而不知道该数据启动的任务。在培训期间,持续的捕获和选择(CP&S)在DNN中找到了负责解决给定任务的子网。然后,在推理期间,CP&S选择正确的子网以对该任务进行预测。通过培训DNN的可用神经元连接(以前未经训练)来创建一个新的子网络,从而通过修剪来学习一项新任务,该连接可以包括以前训练的其他子网络(S),因为它没有更新共享的连接,因为它可以属于其他子网络(S)。这使得通过在DNN中创建专门的区域而不会相互冲突的同时仍允许知识转移在其中,可以消除灾难性的遗忘。 CP&S策略采用不同的子网络选择策略实施,揭示了在各种数据集(CIFAR-100,CUB-200,2011年,Imagenet-100和Imagenet-100)上测试的最先进的持续学习方法的卓越性能。特别是,CP&S能够从Imagenet-1000中依次学习10个任务,以确保94%的精度,而遗忘可忽略不计,这是课堂学习学习的首要结果。据作者所知,与最佳替代方法相比,这表示准确性高于20%的改善。
translated by 谷歌翻译
持续的学习方法通​​过试图解决灾难性遗忘来帮助深度神经网络模型适应和逐步学习。但是,无论这些现有方法是否传统上应用于基于图像的任务,都具有与移动或嵌入式传感系统生成的顺序时间序列数据相同的疗效仍然是一个未解决的问题。为了解决这一空白,我们进行了第一项全面的经验研究,该研究量化了三个主要的持续学习方案的性能(即,在三个移动和嵌入式感应应用程序中的六个数据集中的三个主要的持续学习方案(即正规化,重播和重播)的性能。不同的学习复杂性。更具体地说,我们在Edge设备上实现了端到端连续学习框架。然后,我们研究了不同持续学习方法的性能,存储,计算成本和记忆足迹之间的普遍性,权衡。我们的发现表明,以示例性计划(例如ICARL)重播,即使在复杂的场景中,甚至在复杂的场景中都具有最佳的性能权衡,以牺牲一些存储空间(少数MB)来训练示例(1%至5%)。我们还首次证明,以有限的记忆预算进行连续学习,可行和实用。特别是,两种类型的移动设备和嵌入式设备的延迟表明,可以接受递增的学习时间(几秒钟-4分钟)和培训时间(1-75分钟),可以接受,因为嵌入式嵌入式时可能会在设备上进行培训设备正在充电,从而确保完整的数据隐私。最后,我们为希望将不断学习范式应用于移动传感任务的从业者提供了一些准则。
translated by 谷歌翻译
预训练的代表是现代深度学习成功的关键要素之一。但是,现有的关于持续学习方法的作品主要集中在从头开始逐步学习学习模型。在本文中,我们探讨了一个替代框架,以逐步学习,我们不断从预训练的表示中微调模型。我们的方法利用了预训练的神经网络的线性化技术来进行简单有效的持续学习。我们表明,这使我们能够设计一个线性模型,其中将二次参数正则方法作为最佳持续学习策略,同时享受神经网络的高性能。我们还表明,所提出的算法使参数正则化方法适用于类新问题。此外,我们还提供了一个理论原因,为什么在接受跨凝结损失训练的神经网络上,现有的参数空间正则化算法(例如EWC表现不佳)。我们表明,提出的方法可以防止忘记,同时在图像分类任务上实现高连续的微调性能。为了证明我们的方法可以应用于一般的持续学习设置,我们评估了我们在数据收入,任务收入和课堂学习问题方面的方法。
translated by 谷歌翻译
Continual Learning is a step towards lifelong intelligence where models continuously learn from recently collected data without forgetting previous knowledge. Existing continual learning approaches mostly focus on image classification in the class-incremental setup with clear task boundaries and unlimited computational budget. This work explores Online Domain-Incremental Continual Segmentation~(ODICS), a real-world problem that arises in many applications, \eg, autonomous driving. In ODICS, the model is continually presented with batches of densely labeled images from different domains; computation is limited and no information about the task boundaries is available. In autonomous driving, this may correspond to the realistic scenario of training a segmentation model over time on a sequence of cities. We analyze several existing continual learning methods and show that they do not perform well in this setting despite working well in class-incremental segmentation. We propose SimCS, a parameter-free method complementary to existing ones that leverages simulated data as a continual learning regularizer. Extensive experiments show consistent improvements over different types of continual learning methods that use regularizers and even replay.
translated by 谷歌翻译
Many real-world learning scenarios face the challenge of slow concept drift, where data distributions change gradually over time. In this setting, we pose the problem of learning temporally sensitive importance weights for training data, in order to optimize predictive accuracy. We propose a class of temporal reweighting functions that can capture multiple timescales of change in the data, as well as instance-specific characteristics. We formulate a bi-level optimization criterion, and an associated meta-learning algorithm, by which these weights can be learned. In particular, our formulation trains an auxiliary network to output weights as a function of training instances, thereby compactly representing the instance weights. We validate our temporal reweighting scheme on a large real-world dataset of 39M images spread over a 9 year period. Our extensive experiments demonstrate the necessity of instance-based temporal reweighting in the dataset, and achieve significant improvements to classical batch-learning approaches. Further, our proposal easily generalizes to a streaming setting and shows significant gains compared to recent continual learning methods.
translated by 谷歌翻译
时间序列数据的持续学习(CL)代表了现实世界应用的有希望但知之甚少的途径。我们为人类国家监测提出了两个新的CLENG基准。我们仔细设计了基准,以反映现实世界中的环境,其中不断添加新主题。我们进行了经验评估,以评估流行策略减轻基准中遗忘的能力。我们的结果表明,可能由于我们的基准的领域收入属性,即使使用简单的填充也可以轻松解决忘记,并且现有的策略在积累固定,固定的,测试的主题上积累知识而挣扎。
translated by 谷歌翻译
这项工作调查了持续学习(CL)与转移学习(TL)之间的纠缠。特别是,我们阐明了网络预训练的广泛应用,强调它本身受到灾难性遗忘的影响。不幸的是,这个问题导致在以后任务期间知识转移的解释不足。在此基础上,我们提出了转移而不忘记(TWF),这是在固定的经过预定的兄弟姐妹网络上建立的混合方法,该方法不断传播源域中固有的知识,通过层次损失项。我们的实验表明,TWF在各种设置上稳步优于其他CL方法,在各种数据集和不同的缓冲尺寸上,平均每种类型的精度增长了4.81%。
translated by 谷歌翻译
对非平稳数据流的持续学习(CL)仍然是深层神经网络(DNN)的长期挑战之一,因为它们容易出现灾难性的遗忘。 CL模型可以从自我监督的预训练中受益,因为它可以学习更具概括性的任务不可能的功能。但是,随着任务序列的长度的增加,自我监督的预训练的影响会减少。此外,域前训练数据分布和任务分布之间的域转移降低了学习表示的普遍性。为了解决这些局限性,我们建议任务不可知代表合并(TARC),这是CL的两阶段培训范式,它交织了任务 - 诺斯局和特定于任务的学习,从而自欺欺人的培训,然后为每个任务进行监督学习。为了进一步限制在自我监督阶段的偏差,我们在监督阶段采用了任务不可屈服的辅助损失。我们表明,我们的培训范式可以轻松地添加到基于内存或正则化的方法中,并在更具挑战性的CL设置中提供一致的性能增长。我们进一步表明,它导致更健壮和校准的模型。
translated by 谷歌翻译