随着电子健康记录(EHR)在医疗保健设施中的广泛应用,深入学习的健康事件预测越来越受到关注。用于深度学习的预测的EHR数据的一个共同特征是历史诊断。现有的工作主要认为诊断为独立疾病,并不考虑访问中疾病之间的临床关系。许多机器学习方法假设疾病表示在患者的不同访问中是静态的。然而,在实际实践中,同时经常被诊断的多种疾病反映了有利于预后的隐藏模式。此外,疾病的发展不是静态,因为某些疾病可以出现或消失,并且在患者的不同访问中显示各种症状。为了有效利用这种组合疾病信息并探索疾病的动态,我们提出了一种使用动态疾病图表上的转换功能的新型背景感知学习框架。具体而言,我们构建一种具有多个节点属性的全球疾病共同发生图,用于疾病组合。我们为每位患者的访问设计动态子图,以利用全球和本地环境。我们进一步根据节点属性的变化来定义每次访问中的三个诊断角色,以模拟疾病过渡过程。两个真实世界EHR数据集的实验结果表明,建议的模型优于现有技术的预测健康事件。
translated by 谷歌翻译
电子健康记录(EHR)已经大量用于现代医疗保健系统,用于将患者的入场信息记录到医院。许多数据驱动方法采用EHR中的时间特征,用于预测患者的特定疾病,阅告期或诊断。然而,由于某些时间事件的监督培训中固有的标签,大多数现有的预测模型不能充分利用EHR数据。此外,对于现有的作品很难同时提供通用和个性化的解释性。为解决这些挑战,我们首先提出了一种具有信息流到分层结构的信息流的双曲线嵌入方法。我们将这些预先训练的表征纳入了图形神经网络以检测疾病并发症,并设计一种计算特定疾病和入学贡献的多级注意方法,从而提高个性化的可解释性。我们在自我监督的学习框架中提出了一个新的层次结构增强的历史预测代理任务,以充分利用EHR数据和利用医疗领域知识。我们开展一套全面的实验和案例研究,广泛使用的公开可用的EHR数据集以验证我们模型的有效性。结果表明我们的模型在预测任务和可解释能力方面的优势。
translated by 谷歌翻译
疾病的早​​期诊断可能会改善健康结果,例如较高的存活率和较低的治疗成本。随着电子健康记录中的大量信息(EHR),使用机器学习(ML)方法有很大的潜力来对疾病进展进行建模,以旨在早期预测疾病发作和其他结果。在这项工作中,我们采用了神经odes的最新创新来利用EHR的全部时间信息。我们提出了冰节(将临床嵌入与神经普通微分方程的整合),该体系结构在时间上整合临床代码和神经ODE的嵌入,以学习和预测EHR中的患者轨迹。我们将我们的方法应用于公共可用的模拟III和模拟IV数据集,与最新方法相比,报告了预测结果的改进,特别是针对EHR中经常观察到的临床代码。我们还表明,冰节在预测某些医疗状况(例如急性肾衰竭和肺心脏病)方面更有能力,并且还能够随着时间的推移产生患者的风险轨迹,以进行进一步的预测。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
基于电子健康记录(EHR)的健康预测建筑模型已成为一个活跃的研究领域。 EHR患者旅程数据由患者定期的临床事件/患者访问组成。大多数现有研究的重点是建模访问之间的长期依赖性,而无需明确考虑连续访问之间的短期相关性,在这种情况下,将不规则的时间间隔(并入为辅助信息)被送入健康预测模型中以捕获患者期间的潜在渐进模式。 。我们提出了一个具有四个模块的新型深神经网络,以考虑各种变量对健康预测的贡献:i)堆叠的注意力模块在每个患者旅程中加强了临床事件中的深层语义,并产生访问嵌入,ii)短 - 术语时间关注模块模型在连续访问嵌入之间的短期相关性,同时捕获这些访问嵌入中时间间隔的影响,iii)长期时间关注模块模型的长期依赖模型,同时捕获时间间隔内的时间间隔的影响这些访问嵌入,iv),最后,耦合的注意模块适应了短期时间关注和长期时间注意模块的输出,以做出健康预测。对模拟III的实验结果表明,与现有的最新方法相比,我们的模型的预测准确性以及该方法的可解释性和鲁棒性。此外,我们发现建模短期相关性有助于局部先验的产生,从而改善了患者旅行的预测性建模。
translated by 谷歌翻译
本文研究了医学领域的概念与患者表示的问题。我们将电子健康记录(EHRS)的患者历史作为ICD概念的时间序列,其中嵌入在一个无监督的设置中学习了一种基于变压器的神经网络模型。在6年内对百万患者历史的收集进行了模型培训。与几种基线方法相比,评估这种模型的预测力。与类似系统相比,对模拟-III数据的一系列实验显示了所呈现模型的优势。此外,我们分析了对概念关系的获得空间,并展示了医学领域的知识如何成功转移到患者嵌入形式的保险评分的实际任务。
translated by 谷歌翻译
实验室检测和药物处方是日常临床实践中最重要的两种惯例。开发一种人工智能系统,可以自动制造实验室测试借助和药物建议可以节省潜在的冗余实验室测试,并告知医生更有效的处方。我们展示了一个智能医疗系统(名为Medgcn),可以根据其不完整的实验室测试自动推荐患者的药物,甚至可以准确估计未被采取的实验室值。在我们的系统中,我们将多种类型的医疗实体之间的复杂关系与其在异构图中的固有功能集成。然后,我们模拟图表以了解基于图形卷积网络(GCN)图表中的每个实体的分布式表示。通过图形卷积网络的传播,实体表示可以包含多种类型的医疗信息,可以使多种医疗任务受益。此外,我们介绍了交叉正则化策略,以减少多任务之间的交互的多任务培训过度装备。在本研究中,我们构建一个图形,以将4种类型的医疗实体,即患者,遇到,实验室测试和药物相关联,并应用图形神经网络来学习用于药物推荐和实验室测试贷款的节点嵌入。我们在两个现实世界数据集上验证了我们的Medgcn模型:nmedw和mimic-III。两个数据集的实验结果表明,我们的模型可以在两个任务中表现出最先进的。我们认为,我们的创新系统可以提供有希望和可靠的方法来帮助医生制作药物处置处方,并节省潜在的冗余实验室测试。
translated by 谷歌翻译
保持个人特征和复杂的关系,广泛利用和研究了图表数据。通过更新和聚合节点的表示,能够捕获结构信息,图形神经网络(GNN)模型正在获得普及。在财务背景下,该图是基于实际数据构建的,这导致复杂的图形结构,因此需要复杂的方法。在这项工作中,我们在最近的财务环境中对GNN模型进行了全面的审查。我们首先将普通使用的财务图分类并总结每个节点的功能处理步骤。然后,我们总结了每个地图类型的GNN方法,每个区域的应用,并提出一些潜在的研究领域。
translated by 谷歌翻译
深度学习模型已经实现了患者电子健康记录(EHR)的有希望的疾病预测。但是,大多数模型在I.I.D.下开发了假设未能考虑不可知的分布变化,从而降低了深度学习模型到分布(OOD)数据的概括能力。在这种情况下,将利用可能在不同环境中发生变化的虚假统计相关性,这可能会导致深度学习模型的次优性能。训练分布中存在过程和诊断之间的不稳定相关性可能会导致历史EHR与未来诊断之间的虚假相关性。为了解决这个问题,我们建议使用一种称为因果医疗保健嵌入(CHE)的因果表示学习方法。 CHE旨在通过消除诊断和程序之间的依赖性来消除虚假的统计关系。我们介绍了希尔伯特 - 史密特独立标准(HSIC),以衡量嵌入式诊断和程序特征之间的独立性。基于因果观点分析,我们执行样本加权技术,以摆脱这种虚假关系,以跨不同环境对EHR进行稳定学习。此外,我们提出的CHE方法可以用作灵活的插件模块,可以增强EHR上现有的深度学习模型。在两个公共数据集和五个最先进的基线上进行了广泛的实验表明,CHE可以通过大幅度提高深度学习模型对分布数据的预测准确性。此外,可解释性研究表明,CHE可以成功利用因果结构来反映历史记录对预测的更合理贡献。
translated by 谷歌翻译
药物建议是医疗保健的AI的重要任务。现有作品的重点是仅根据其电子健康记录,为具有复杂健康状况的患者推荐药物组合。因此,它们具有以下局限性:(1)在建议过程中尚未使用一些重要数据,例如药物分子结构。 (2)对药物 - 药物相互作用(DDI)进行隐式建模,这可以导致亚最佳结果。为了解决这些局限性,我们提出了一个名为SAFEDRUG的DDI可控制的药物建议模型,以明确利用药物的分子结构和DDIS模型。 SAFEDRUG配备了全球消息传递神经网络(MPNN)模块和局部两部分学习模块,以完全编码药物分子的连通性和功能。 SAFEDRUG还具有可控的损失函数,可有效地控制建议的药物组合中的DDI水平。在基准数据集中,我们的SAFEDRUG相对显示可将DDI降低19.43%,并在推荐和实际规定的药物组合之间在以前的方法上的JACCARD相似性提高了2.88%。此外,SAFEDRUG还需要比以前的基于深度学习的方法更少的参数,从而使推理的训练更快约为14%,速度约为2倍。
translated by 谷歌翻译
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
我们利用深度顺序模型来解决预测患者医疗保健利用的问题,这可能有助于政府更好地为未来的医疗保健使用提供资源。具体地,我们研究\纺织{发散亚组}的问题,其中较小的人口小组中的结果分布大大偏离了一般人群的群体。如果亚组的尺寸非常小(例如,稀有疾病),则对不同亚组的专业模型建造专门模型的传统方法可能是有问题的。为了解决这一挑战,我们首先开发一种新的无关注顺序模型,SANSFORMERS,灌输了适合在电子医疗记录中建模临床码的归纳偏差。然后,我们通过在整个健康登记处预先培训每个模型(接近100万名患者)之前,设计了一个特定的自我监督目标,并展示其有效性,特别是稀缺数据设置,特别是在整个健康登记处(接近一百万名患者)进行微调下游任务不同的子组。我们使用两个数据来源与LSTM和变压器模型进行比较新的SANSFARER架构和辅助医疗利用预测的多任务学习目标。凭经验,无关注的Sansformer模型在实验中始终如一地执行,在大多数情况下以至少$ \ SIM 10 $ \%表现出在大多数情况下的基线。此外,在预测医院访问数量时,自我监督的预训练将在整个始终提高性能,例如通过超过$ \ sim 50 $ \%(和高度为800美元\%)。
translated by 谷歌翻译
Predicting the health risks of patients using Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Health risk refers to the probability of the occurrence of a specific health outcome for a specific patient. The predicted risks can be used to support decision-making by healthcare professionals. EHRs are structured patient journey data. Each patient journey contains a chronological set of clinical events, and within each clinical event, there is a set of clinical/medical activities. Due to variations of patient conditions and treatment needs, EHR patient journey data has an inherently high degree of missingness that contains important information affecting relationships among variables, including time. Existing deep learning-based models generate imputed values for missing values when learning the relationships. However, imputed data in EHR patient journey data may distort the clinical meaning of the original EHR patient journey data, resulting in classification bias. This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks. Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation. Extensive experimental results using the proposed model on two real-world datasets demonstrate robust performance as well as superior prediction accuracy compared to existing state-of-the-art imputation-based prediction methods.
translated by 谷歌翻译
药物建议是智能医疗系统的关键任务。先前的研究主要建议使用电子健康记录(EHRS)药物。但是,在EHR中可能会忽略或忽略医生与患者之间的相互作用的一些细节,这对于自动药物建议至关重要。因此,我们首次尝试通过医生和患者之间的对话推荐药物。在这项工作中,我们构建了Dialmed,这是第一个用于基于医学对话的药物建议任务的高质量数据集。它包含与3个部门的16种常见疾病和70种相应常见药物有关的11,996次医疗对话。此外,我们提出了对话结构和疾病知识意识网络(DDN),其中QA对话图机制旨在模拟对话结构,并使用知识图来引入外部疾病知识。广泛的实验结果表明,所提出的方法是推荐与医疗对话的药物的有前途的解决方案。该数据集和代码可在https://github.com/f-window/dialmed上找到。
translated by 谷歌翻译
自动化医疗编码,医疗保健操作和交付的基本任务,通过从临床文献预测医学代码来实现非结构化数据。自然语言处理中深入学习模型的最新进展已被广泛应用于此任务。然而,它缺乏对医学编码的神经网络架构设计的统一视图。本综述提出了一个统一的框架,为医疗编码模型的构建块提供了一般性的理解,并概述了近期框架下的最新模型。我们的统一框架将医疗编码分解为四个主要组件,即文本特征提取的编码器模块,为构建深编码器架构的机制,解码器模块,用于将隐藏的表示转换为医学代码,以及辅助信息的使用。最后,我们讨论了关键的研究挑战和未来方向。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
International Classification of Diseases (ICD) is a set of classification codes for medical records. Automated ICD coding, which assigns unique International Classification of Diseases codes with each medical record, is widely used recently for its efficiency and error-prone avoidance. However, there are challenges that remain such as heterogeneity, label unbalance, and complex relationships between ICD codes. In this work, we proposed a novel Bidirectional Hierarchy Framework(HieNet) to address the challenges. Specifically, a personalized PageRank routine is developed to capture the co-relation of codes, a bidirectional hierarchy passage encoder to capture the codes' hierarchical representations, and a progressive predicting method is then proposed to narrow down the semantic searching space of prediction. We validate our method on two widely used datasets. Experimental results on two authoritative public datasets demonstrate that our proposed method boosts state-of-the-art performance by a large margin.
translated by 谷歌翻译
人类编码人员将标准化的医疗法规分配给患者住院期间产生的临床文件,该文件容易出错且劳动力密集。使用机器学习方法(例如深神经网络)开发了自动化的医学编码方法。然而,由于冗长的文档中的班级问题,复杂的代码关联和噪音,自动化的医疗编码仍然具有挑战性。为了解决这些问题,我们提出了一个新型的神经网络,称为多任务和重新校准的神经网络。值得注意的是,多任务学习方案共享不同代码分支之间的关系知识以捕获代码关联。重新校准的聚合模块是通过级联卷积块来提取高级语义特征来开发的,从而减轻噪声在文档中的影响。同样,重新校准的模块的级联结构可以从冗长的音符中受益。为了解决类不平衡的问题,我们部署了焦点损失,以重新分布低频和高频医疗法规的注意力。实验结果表明,我们提出的模型在现实世界中的临床数据集模拟于III上优于竞争基线。
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译