深度神经网络在很大程度上证明了他们通过从输入音频帧中提取有意义的功能来执行自动语音识别(ASR)的能力。但是,此类功能不仅包括有关口语内容的信息,而且还可能包含有关不必要上下文的信息,例如背景噪声和声音或说话者身份,口音或受保护的属性。这样的信息可以通过引入口头词与说出此类词的上下文之间的虚假相关性来直接损害概括性能。在这项工作中,我们介绍了一种无监督的,编码的方法,用于将语音编码器描述为明确的内容编码表示和虚假的上下文编码表示形式。通过这样做,我们证明了标准ASR基准的性能提高,并在现实世界和人为嘈杂的ASR方案中的性能提高。
translated by 谷歌翻译
传统上,自动语音识别的研究重点是对音频表示的本地首选编码,以预测话语中的语音。不幸的是,依靠此类超本地信息的方法往往容易受到本地级腐败(例如音频框架掉落或大声的噪音)和全球级别的噪音(例如环境噪音或背景噪音)在训练期间看到。在这项工作中,我们介绍了一种新颖的方法,该方法利用了基于掩盖语言建模的自我监督的学习技术来计算对话语发生的环境的全球多模式编码。然后,我们使用一个新的深融合框架将这种全局上下文集成到传统的ASR方法中,并证明所得的方法可以在LibrisPeech上胜过高达7%的基线方法;内部数据集的收益范围从6%(较大型号)到45%(在较小的型号上)。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 1 1 Code and models are available at https://github.com/pytorch/fairseq Preprint. Under review.
translated by 谷歌翻译
最近,蒙面的预测预训练在自我监督的学习(SSL)方面取得了显着的进展,以进行语音识别。它通常需要以无监督的方式获得的代码簿,从而使其准确和难以解释。我们提出了两种监督指导的代码书生成方法,以提高自动语音识别(ASR)的性能以及预训练效率,要么通过使用混合ASR系统来解码以生成音素级别对准(命名为PBERT),要么通过在上进行集群进行聚类。从端到端CTC模型(命名CTC聚类)提取的监督语音功能。混合动力和CTC模型均经过与微调相同的少量标记语音训练。实验表明,我们的方法对各种SSL和自我训练基准的优势具有显着优势,相对减少了17.0%。我们的预训练模型在非ASR语音任务中还显示出良好的可传递性。
translated by 谷歌翻译
语音中的自我监督学习涉及在大规模的未注释的语音语料库上训练语音表示网络,然后将学习的表示形式应用于下游任务。由于语音中SSL学习的大多数下游任务主要集中在语音中的内容信息上,因此最理想的语音表示形式应该能够将不需要的变化(例如说话者的变化)从内容中删除。但是,解开扬声器非常具有挑战性,因为删除说话者的信息也很容易导致内容丢失,而后者的损害通常远远超过了前者的好处。在本文中,我们提出了一种新的SSL方法,该方法可以实现扬声器分解而不会严重丢失内容。我们的方法是根据休伯特框架改编的,并结合了解开机制,以使教师标签和博学的代表规范化。我们在一组与内容相关的下游任务上评估了说话者分解的好处,并观察到我们的扬声器示词表示的一致且著名的性能优势。
translated by 谷歌翻译
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-ofthe-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 1
translated by 谷歌翻译
我们提出了Maestro,这是一种自制的培训方法,可以统一从语音和文本方式中学到的表示形式。从语音信号中进行的自我监督学习旨在学习信号中固有的潜在结构,而从文本尝试捕获词汇信息的文本尝试中学习。从不配对的语音和文本序列中学习对齐表示是一项具有挑战性的任务。先前的工作要么隐含地强制执行从这两种方式中学到的表示形式,要通过多任务和参数共享在潜在空间中对齐,或通过语音综合通过模态转换而明确地进行。前者受到两种方式之间的干扰,而后者则引入了额外的复杂性。在本文中,我们提出了一种新颖的算法Maestro,旨在同时从这两种方式中学习统一的表示,可以转移到各种下游任务,例如自动语音识别(ASR)和语音翻译(ST)。 Maestro通过序列比对,持续时间预测和匹配的嵌入在学习空间中通过对齐的蒙版模型损失来学习统一的表示形式。我们在Voxpopuli多语言ASR上建立了一个新的最先进(SOTA),单词错误率相对相对降低8%(WER),多域Speetstew ASR(相对3.7%)和21种英语多语言ST在Covost 2上2.8 BLEU的改善平均21种语言。
translated by 谷歌翻译
我们提出了一种简单有效的自我监督学习方法,以供语音识别。该方法以随机预测量化器生成的离散标签的形式学习了一个模型,以预测蒙版的语音信号。尤其是量化器的语音输入带有随机初始化的矩阵,并在随机限制的代码簿中进行最近的邻居查找。在自我监督的学习过程中,矩阵和密码簿均未更新。由于未对随机预测量化器进行训练,并与语音识别模型分开,因此该设计使该方法具有灵活性,并且与通用语音识别体系结构兼容。在LibrisPeech上,我们的方法与以前的工作相比,使用非流式模型获得了与以前的工作相似的单词率,并且比WAV2VEC 2.0和WAP2VEC 2.0和w2v-bert提供了较低的单词率率和延迟。在多语言任务上,该方法还提供了与WAV2VEC 2.0和W2V-bert的显着改进。
translated by 谷歌翻译
语音的视频录制包含相关的音频和视觉信息,为语音表示从扬声器的唇部运动和产生的声音提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HUBERT),是视听语音的自我监督的代表学习框架,这些屏幕屏蔽了多流视频输入并预测自动发现和迭代地精制多模式隐藏单元。 AV-HUBERT学习强大的视听语音表示,这些语音表示受益于唇读和自动语音识别。在最大的公众唇读基准LRS3(433小时)中,AV-Hubert达到32.5%WER,只有30个小时的标签数据,优于前一种最先进的方法(33.6%)培训,达到了一千次转录的视频数据(31k小时)。当使用来自LRS3的所有433小时的标记数据并结合自培训时,唇读WER进一步降低至26.9%。使用我们在相同的基准测试中使用您的视听表示,用于音频语音识别的相对效率为40%,而最先进的性能(1.3%Vs 2.3%)。我们的代码和模型可在https://github.com/facebookResearch/av_hubert获得
translated by 谷歌翻译
While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
Through solving pretext tasks, self-supervised learning leverages unlabeled data to extract useful latent representations replacing traditional input features in the downstream task. In audio/speech signal processing, a wide range of features where engineered through decades of research efforts. As it turns out, learning to predict such features (a.k.a pseudo-labels) has proven to be a particularly relevant pretext task, leading to useful self-supervised representations which prove to be effective for downstream tasks. However, methods and common practices for combining such pretext tasks for better performance on the downstream task have not been explored and understood properly. In fact, the process relies almost exclusively on a computationally heavy experimental procedure, which becomes intractable with the increase of the number of pretext tasks. This paper introduces a method to select a group of pretext tasks among a set of candidates. The method we propose estimates calibrated weights for the partial losses corresponding to the considered pretext tasks during the self-supervised training process. The experiments conducted on automatic speech recognition, speaker and emotion recognition validate our approach, as the groups selected and weighted with our method perform better than classic baselines, thus facilitating the selection and combination of relevant pseudo-labels for self-supervised representation learning.
translated by 谷歌翻译
最近,语音表示学习改善了许多与语音有关的任务,例如语音识别,语音分类和语音到文本翻译。但是,以上所有任务都朝着语音理解的方向发展,但是对于反向方向,言语综合,由于产生高质量语音的挑战性质,代表性学习的潜力尚未实现。为了解决这个问题,我们提出了我们的框架,对准的声音文本预处理($^3 $ t),该框架在培训期间重建了带有文本输入和声学文本对齐的蒙面声信号。通过这种方式,预处理的模型可以生成高质量的重建频谱图,可以直接应用于语音编辑和看不见的扬声器tts。实验显示了$^3 $ t在语音编辑上的SOTA模型,并在没有外部说话者验证模型的情况下改善了多扬声器语音综合。
translated by 谷歌翻译
无监督的语音识别表现出了使每种语言都可以访问的自动语音识别(ASR)系统的巨大潜力。但是,现有方法仍然严重依赖手工制作的预处理。与端到端进行监督语音识别的趋势类似,我们介绍了WAV2VEC-U 2.0,它消除了所有音频端的预处理,并通过更好的体系结构提高了准确性。此外,我们引入了一个辅助自我监督的目标,该目标将模型的预测与输入联系起来。实验表明,WAV2VEC-U 2.0在概念上更简单的同时,可以改善不同语言的无监督识别结果。
translated by 谷歌翻译
我们总结了使用巨大的自动语音识别(ASR)模型的大量努力的结果,该模型使用包含大约一百万小时音频的大型,多样的未标记数据集进行了预训练。我们发现,即使对于拥有数万个小时的标记数据的非常大的任务,预训练,自我培训和扩大模型大小的组合也大大提高了数据效率。特别是,在具有34K小时标记数据的ASR任务上,通过微调80亿个参数预先训练的构象异构体模型,我们可以匹配最先进的(SOTA)性能(SOTA)的性能,只有3%的培训数据和通过完整的训练集可以显着改善SOTA。我们还报告了从使用大型预训练和自我训练的模型来完成一系列下游任务所获得的普遍利益,这些任务涵盖了广泛的语音域,并涵盖了多个数据集大小的大小,包括在许多人中获得SOTA性能公共基准。此外,我们利用预先训练的网络的学会表示,在非ASR任务上实现SOTA结果。
translated by 谷歌翻译
无监督的零射声语音转换(VC)旨在修改话语的扬声器特性,以匹配看不见的目标扬声器,而无需依赖并行培训数据。最近,已经显示了语音表示的自我监督学习在不使用转录物的情况下产生有用的语言单元,这可以直接传递给VC模型。在本文中,我们展示了通过使用长度重采样解码器来实现高质量的音频样本,这使得VC模型能够与不同的语言特征提取器和声码器一起工作,而无需它们以相同的序列长度运行。我们表明,我们的方法可以胜过VCTK数据集的许多基线。在不修改架构的情况下,我们进一步展示了a)使用来自同一扬声器的不同音频段,b)添加循环一致性损失,并且c)添加扬声器分类损失可以有助于学习更好的扬声器嵌入。我们的模型使用这些技术训练了Libritts,实现了最佳性能,产生了音频样本对目标扬声器的声音,同时保留了在字符错误率方面与实际人类话语相当的语言内容。
translated by 谷歌翻译
仔细的音频表示形式已成为许多语音任务方法设计的主要特征。这种方法越来越强调“解开”,其中表示形式仅包含与转录相关的一部分,同时丢弃无关信息。在本文中,我们基于ASR和TTS的联合建模构建了一项表示的学习任务,并试图学习音频的表示,该声音信号的一部分与该部分相关的一部分与该部分相关。我们提供了经验证据,表明成功找到这种表示形式与训练中固有的随机性有关。然后,我们观察到这些所需的,分散的解决方案对优化问题具有独特的统计特性。最后,我们表明,在训练期间执行这些特性会使我们的联合建模任务平均相对24.5%。这些观察结果激发了一种新颖的学习有效音频表示的方法。
translated by 谷歌翻译