从密集的气体区域找到稀有气体区域的扩展流体动力学方程仍然是一个很大的挑战。成功的关键是获得准确的构成关系,用于应力和热量通量。最近的数据驱动模型提供了一种从数据学习本构关系的新现象学方法。这种模型使得复杂的本构关系使牛顿粘度和傅里叶的热传导定律扩展,通过更高衍生物的回归。然而,这些模型中的衍生物的选择是ad-hoc,而没有明确的物理解释。我们从理论上调查了数据驱动的模型在线性系统。我们认为这些模型相当于运输系数的非线性长度比例缩放规律。缩放法律的等价证明了物理合理性,并揭示了数据驱动模型的限制。我们的论点还指出,建模缩放法则明确可以避免数据驱动模型中的实际困难,如巨大数据的衍生估计和变量选择。我们进一步提出了一种基于缩放法的构成关系模型,并测试了瑞利散射光谱的计算。结果显示数据驱动的模型在第一次上的Chapman-Enskog扩展和时刻方法具有明显的优势。
translated by 谷歌翻译
当系统中有某些未知术语和隐藏的物理机制时,基于第一原理的复杂物理系统的管理方程可能会非常具有挑战性。在这项工作中,我们采用深度学习体系结构来学习基于从完全动力学模型中获取的数据的等离子体系统的流体部分微分方程(PDE)。证明了学到的多臂流体PDE可以融合诸如Landau阻尼等动力学效应。基于学习的流体闭合,数据驱动的多音阶流体建模可以很好地再现从完全动力学模型中得出的所有物理量。Landau阻尼的计算阻尼率与完全动力学的模拟和线性理论一致。用于复杂物理系统的PDE的数据驱动的流体建模可以应用于改善流体闭合并降低全球系统多规模建模的计算成本。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们开发了一种多尺度方法,以从实验或模拟中观察到的物理字段或配置的数据集估算高维概率分布。通过这种方式,我们可以估计能量功能(或哈密顿量),并有效地在从统计物理学到宇宙学的各个领域中生成多体系统的新样本。我们的方法 - 小波条件重新归一化组(WC-RG) - 按比例进行估算,以估算由粗粒磁场来调节的“快速自由度”的条件概率的模型。这些概率分布是由与比例相互作用相关的能量函数建模的,并以正交小波为基础表示。 WC-RG将微观能量函数分解为各个尺度上的相互作用能量之和,并可以通过从粗尺度到细度来有效地生成新样品。近相变,它避免了直接估计和采样算法的“临界减速”。理论上通过结合RG和小波理论的结果来解释这一点,并为高斯和$ \ varphi^4 $字段理论进行数值验证。我们表明,多尺度WC-RG基于能量的模型比局部电位模型更通用,并且可以在所有长度尺度上捕获复杂的多体相互作用系统的物理。这是针对反映宇宙学中暗物质分布的弱透镜镜头的,其中包括与长尾概率分布的长距离相互作用。 WC-RG在非平衡系统中具有大量的潜在应用,其中未知基础分布{\ it先验}。最后,我们讨论了WC-RG和深层网络体系结构之间的联系。
translated by 谷歌翻译
在随机抽样方法中,马尔可夫链蒙特卡洛算法是最重要的。在随机行走都市方案中,我们利用分析方法和数值方法的结合研究了它们的收敛性能。我们表明,偏离目标稳态分布的偏差特征是定位过渡的函数,这是定义随机步行的尝试跳跃的特征长度。该过渡大大改变了误差,而误差是通过不完整的收敛引入的,并区分了两个方案,其中弛豫机制分别受扩散和排斥分别受到限制。
translated by 谷歌翻译
量子信息技术的快速发展显示了在近期量子设备中模拟量子场理论的有希望的机会。在这项工作中,我们制定了1+1尺寸$ \ lambda \ phi \ phi^4 $量子场理论的(时间依赖性)变异量子模拟理论,包括编码,状态准备和时间演化,并具有多个数值模拟结果。这些算法可以理解为Jordan-Lee-Preskill算法的近期变异类似物,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ降低公式和几种计算效率的谐波振荡器基础编码的优势,例如在实施单一耦合群集ANSATZ的肺泡版本时,以准备初始状态。我们还讨论了如何在量子场理论仿真中规避“光谱拥挤”问题,并根据州和子空间保真度评估我们的算法。
translated by 谷歌翻译
在高维度中整合时间依赖性的fokker-planck方程的选择方法是通过集成相关的随机微分方程来生成溶液中的样品。在这里,我们介绍了基于整合描述概率流的普通微分方程的替代方案。与随机动力学不同,该方程式在以后的任何时候都会从初始密度将样品从溶液中的样品推到样品。该方法具有直接访问数量的优势,这些数量挑战仅估算仅给定解决方案的样品,例如概率电流,密度本身及其熵。概率流程方程取决于溶液对数的梯度(其“得分”),因此A-Priori未知也是如此。为了解决这种依赖性,我们用一个深神网络对分数进行建模,该网络通过根据瞬时概率电流传播一组粒子来实现,该网络可以在直接学习中学习。我们的方法是基于基于得分的生成建模的最新进展,其重要区别是训练程序是独立的,并且不需要来自目标密度的样本才能事先可用。为了证明该方法的有效性,我们考虑了相互作用粒子系统物理学的几个示例。我们发现该方法可以很好地缩放到高维系统,并准确匹配可用的分析解决方案和通过蒙特卡洛计算的力矩。
translated by 谷歌翻译
我们训练一个神经网络模型,以预测宇宙N体模拟的全相空间演化。它的成功表明,神经网络模型正在准确地近似绿色的功能扩展,该功能将模拟的初始条件与其在深层非线性方向上的后期结合到结果。我们通过评估其在具有已知精确解决方案或充分理解扩展的简单情况下的良好理解的简单案例上的表现来测试这种近似值的准确性。这些场景包括球形构型,隔离平面波和两个相互作用的平面波:与用于训练的高斯随机场有很大不同的初始条件。我们发现我们的模型可以很好地推广到这些良好理解的方案,这表明网络已经推断了一般的物理原理,并从复杂的随机高斯训练数据中学习了非线性模式耦合。这些测试还为查找模型的优势和劣势以及确定改进模型的策略提供了有用的诊断。我们还测试了仅包含横向模式的初始条件,该模式的模式不仅在其相位上有所不同,而且还与训练集中使用的纵向生长模式相比。当网络遇到与训练集正交的这些初始条件时,该模型将完全失败。除了这些简单的配置外,我们还评估了模型对N体模拟的标准初始条件的密度,位移和动量功率谱的预测。我们将这些摘要统计数据与N体结果和称为COLA的近似快速模拟方法进行了比较。我们的模型在$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $的非线性尺度上达到百分比精度,代表了对COLA的显着改进。
translated by 谷歌翻译
在本文中,我们采取了一种数据驱动方法,并在板坯几何中辐射传输方程的辐射传输方程施加机器学习。我们建议使用神经网络直接学习高阶时刻的梯度。这种新方法与我们导出的自由流限制的精确关闭一致,并提供自然输出标准化。各种基准测试,包括可变散射问题,具有周期性和反映边界的高斯源问题,以及两端问题,显示了我们机器学习闭合模型的良好准确性和完全性。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
深度神经网络非常成功,因为高度准确的波函数ANS \“ ATZE用于分子基础状态的变异蒙特卡洛计算。我们提出了一个这样的Ansatz,Ferminet的扩展,以计算定期汉密尔顿人的基础状态,并研究均质电子气。小电子气体系统基态能量的费米特计算与先前的启动器完全构型相互作用量子蒙特卡洛和扩散蒙特卡洛计算非常吻合。我们研究了自旋偏振均质的均质电子气体,并证明了这一点相同神经网络架构能够准确地代表离域的费米液态和局部的晶体状态。没有给出网络,没有\ emph {a emph {a a a emph {a a emph {a e emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {并自发打破对称性以产生结晶蛋白E基态在低密度下。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
In my previous article I mentioned for the first time that a classical neural network may have quantum properties as its own structure may be entangled. The question one may ask now is whether such a quantum property can be used to entangle other systems? The answer should be yes, as shown in what follows.
translated by 谷歌翻译
湍流无处不在,获得有效,准确且可概括的订单模型仍然是一个具有挑战性的问题。该手稿开发了减少拉格朗日模型的湍流模型的层次结构,以研究和比较在拉格朗日框架内实施平滑的粒子流体动力学(SPH)结构与嵌入神经网络(NN)作为通用函数近似器中的效果。 SPH是用于近似流体力学方程的无网格拉格朗日方法。从基于神经网络(NN)的拉格朗日加速运算符的参数化开始,该层次结构逐渐结合了一个弱化和参数化的SPH框架,该框架可以执行物理对称性和保护定律。开发了两个新的参数化平滑核,其中包含在完全参数化的SPH模拟器中,并与立方和四分之一的平滑核进行了比较。对于每个模型,我们使用基于梯度的优化最小化的不同损耗函数,其中使用自动分化(AD)和灵敏度分析(SA)获得了有效的梯度计算。每个模型均经过两个地面真理(GT)数据集训练,该数据集与每周可压缩的均质各向同性湍流(hit),(1)使用弱压缩SPH的验证集,(2)来自直接数值模拟(DNS)的高忠诚度集。数值证据表明:(a)对“合成” SPH数据的方法验证; (b)嵌入在SPH框架中近似状态方程的NN的能力; (b)每个模型都能插入DNS数据; (c)编码更多的SPH结构可提高对不同湍流的马赫数和时间尺度的普遍性; (d)引入两个新型参数化平滑核可提高SPH比标准平滑核的准确性。
translated by 谷歌翻译
我们介绍了一个名为统计信息的神经网络(SINN)的机器学习框架,用于从数据中学习随机动力学。从理论上讲,这种新的架构是受到随机系统的通用近似定理的启发,我们在本文中介绍了它,以及用于随机建模的投影手术形式。我们设计了训练神经网络模型的机制,以重现目标随机过程的正确\ emph {统计}行为。数值模拟结果表明,受过良好训练的SINN可以可靠地近似马尔可夫和非马克维亚随机动力学。我们证明了SINN对粗粒问题和过渡动力学的建模的适用性。此外,我们表明可以在时间粗粒的数据上训练所获得的减少阶模型,因此非常适合稀有事实模拟。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译