通过使用无人机和图像识别算法,目前正在大大简化重新造林的监测,这些识别算法已经证明是有效的彩色图像。除彩色图像外,高程数据通常也可用。这项工作的主要目的是通过集成这个高度信息来提高更快-RCNN对象检测算法的性能,这表明自己是特别提高性能。有趣的是,网络的结构播放了一个关键作用,通过直接添加高度信息作为第四图像信道,显示没有改进,而在骨干网络之后的集成以及在区域提议网络之后导致了显着的改进。这种效果持续存在很长的培训制度。增加这种高度信息的分辨率也表现出几乎没有效果。
translated by 谷歌翻译
由于缺乏自动注释系统,大多数发展城市的城市机构都是数字未标记的。因此,在此类城市中,位置和轨迹服务(例如Google Maps,Uber等)仍然不足。自然场景图像中的准确招牌检测是从此类城市街道检索无错误的信息的最重要任务。然而,开发准确的招牌本地化系统仍然是尚未解决的挑战,因为它的外观包括文本图像和令人困惑的背景。我们提出了一种新型的对象检测方法,该方法可以自动检测招牌,适合此类城市。我们通过合并两种专业预处理方法和一种运行时效高参数值选择算法来使用更快的基于R-CNN的定位。我们采用了一种增量方法,通过使用我们构造的SVSO(Street View Signboard对象)签名板数据集,通过详细评估和与基线进行比较,以达到最终提出的方法,这些方法包含六个发展中国家的自然场景图像。我们在SVSO数据集和Open Image数据集上展示了我们提出的方法的最新性能。我们提出的方法可以准确地检测招牌(即使图像包含多种形状和颜色的多种嘈杂背景的招牌)在SVSO独立测试集上达到0.90 MAP(平均平均精度)得分。我们的实施可在以下网址获得:https://github.com/sadrultoaha/signboard-detection
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译
Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.
translated by 谷歌翻译
自动检测武器对于改善个人的安全性和福祉是重要的,仍然是由于各种尺寸,武器形状和外观,这是一项艰巨的任务。查看点变化和遮挡也是使这项任务更加困难的原因。此外,目前的物体检测算法处理矩形区域,但是一个细长和长的步枪可以真正地覆盖区域的一部分区域,其余部分可能包含未经紧的细节。为了克服这些问题,我们提出了一种用于定向意识武器检测的CNN架构,其提供具有改进的武器检测性能的面向边界框。所提出的模型不仅通过将角度作为分类问题的角度分成8个类而且提供方向,而是作为回归问题。对于培训我们的武器检测模型,包括总6400件武器图像的新数据集从网上收集,然后用面向定向的边界框手动注释。我们的数据集不仅提供导向的边界框作为地面真相,还提供了水平边界框。我们还以多种现代对象探测器提供我们的数据集,用于在该领域进一步研究。所提出的模型在该数据集上进行评估,并且与搁板对象检测器的比较分析产生了卓越的拟议模型的性能,以标准评估策略测量。数据集和模型实现在此链接上公开可用:https://bit.ly/2tyzicf。
translated by 谷歌翻译
如今,使用微创手术(MIS)进行了更多的手术程序。这是由于其许多好处,例如最小的术后问题,较少的出血,较小的疤痕和快速的康复。但是,MIS的视野,小手术室和对操作场景的间接查看可能导致手术工具发生冲突并可能损害人体器官或组织。因此,通过使用内窥镜视频饲料实时检测和监视手术仪器,可以大大减少MIS问题,并且可以提高手术程序的准确性和成功率。在本文中,研究,分析和评估了对Yolov5对象检测器的一系列改进,以增强手术仪器的检测。在此过程中,我们进行了基于性能的消融研究,探索了改变Yolov5模型的骨干,颈部和锚固结构元素的影响,并注释了独特的内窥镜数据集。此外,我们将消融研究的有效性与其他四个SOTA对象探测器(Yolov7,Yolor,Scaled-Yolov4和Yolov3-SPP)进行了比较。除了Yolov3-SPP(在MAP中具有98.3%的模型性能和相似的推理速度)外,我们的所有基准模型(包括原始的Yolov5)在使用新的内窥镜数据集的实验中超过了我们的顶级精制模型。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
特征金字塔网络(FPN)已成为对象检测模型考虑对象的各种尺度的重要模块。但是,小物体上的平均精度(AP)相对低于中和大物体上的AP。原因是CNN较深层导致信息丢失作为特征提取水平的原因。我们提出了一个新的比例顺序(S^2)特征FPN的特征提取,以增强小物体的特征信息。我们将FPN结构视为尺度空间和提取尺度序列(s^2)特征,该特征是在FPN的水平轴上通过3D卷积。它基本上是扩展不变的功能,并建立在小物体的高分辨率金字塔功能图上。此外,建议的S^2功能可以扩展到基于FPN的大多数对象检测模型。我们证明所提出的S2功能可以提高COCO数据集中一阶段和两阶段探测器的性能。根据提出的S2功能,我们分别为Yolov4-P5和Yolov4-P6获得了高达1.3%和1.1%的AP改善。对于更快的RCNN和Mask R-CNN,我们分别观察到AP改进的2.0%和1.6%,分别具有建议的S^2功能。
translated by 谷歌翻译
从汽车和交通检测到自动驾驶汽车系统,可以将街道对象的对象检测应用于各种用例。因此,找到最佳的对象检测算法对于有效应用它至关重要。已经发布了许多对象检测算法,许多对象检测算法比较了对象检测算法,但是很少有人比较了最新的算法,例如Yolov5,主要是侧重于街道级对象。本文比较了各种单阶段探测器算法; SSD MobilenetV2 FPN-Lite 320x320,Yolov3,Yolov4,Yolov5L和Yolov5S在实时图像中用于街道级对象检测。该实验利用了带有3,169张图像的修改后的自动驾驶汽车数据集。数据集分为火车,验证和测试;然后,使用重新处理,色相转移和噪音对其进行预处理和增强。然后对每种算法进行训练和评估。基于实验,算法根据推论时间及其精度,召回,F1得分和平均平均精度(MAP)产生了不错的结果。结果还表明,Yolov5L的映射@.5 of 0.593,MobileNetV2 FPN-Lite的推理时间最快,而其他推理时间仅为3.20ms。还发现Yolov5s是最有效的,其具有Yolov5L精度和速度几乎与MobilenetV2 FPN-Lite一样快。这表明各种算法适用于街道级对象检测,并且足够可行,可以用于自动驾驶汽车。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning.This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector. Code is available at https://github.com/msracver/ Relation-Networks-for-Object-Detection.
translated by 谷歌翻译
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes. In contrast, our proposed detector FCOS is anchor box free, as well as proposal free. By eliminating the predefined set of anchor boxes, FCOS completely avoids the complicated computation related to anchor boxes such as calculating overlapping during training. More importantly, we also avoid all hyper-parameters related to anchor boxes, which are often very sensitive to the final detection performance. With the only post-processing non-maximum suppression (NMS), FCOS with ResNeXt-64x4d-101 achieves 44.7% in AP with single-model and single-scale testing, surpassing previous one-stage detectors with the advantage of being much simpler. For the first time, we demonstrate a much simpler and flexible detection framework achieving improved detection accuracy. We hope that the proposed FCOS framework can serve as a simple and strong alternative for many other instance-level tasks. Code is available at:tinyurl.com/FCOSv1
translated by 谷歌翻译
数据采集​​和注释中的困难基本上限制了3D医学成像应用的训练数据集的样本尺寸。结果,在没有足够的预训练参数的情况下,构建来自划痕的高性能3D卷积神经网络仍然是一项艰巨的任务。以前关于3D预培训的努力经常依赖于自我监督的方法,它在未标记的数据上使用预测或对比学习来构建不变的3D表示。然而,由于大规模监督信息的不可用,从这些学习框架获得语义不变和歧视性表示仍然存在问题。在本文中,我们重新审视了一种创新但简单的完全监督的3D网络预训练框架,以利用来自大型2D自然图像数据集的语义监督。通过重新设计的3D网络架构,重新设计的自然图像用于解决数据稀缺问题并开发强大的3D表示。四个基准数据集上的综合实验表明,所提出的预先接受的模型可以有效地加速收敛,同时还提高了各种3D医学成像任务,例如分类,分割和检测的准确性。此外,与从头划伤的训练相比,它可以节省高达60%的注释工作。在NIH Deeplesion数据集上,它同样地实现了最先进的检测性能,优于早期的自我监督和完全监督的预训练方法,以及从头训练进行培训的方法。为了促进3D医疗模型的进一步发展,我们的代码和预先接受的模型权重在https://github.com/urmagicsmine/cspr上公开使用。
translated by 谷歌翻译
物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
颈腺细胞(GC)检测是计算机辅助诊断宫颈腺癌筛查的关键步骤。精确识别宫颈涂片中的GC是挑战的,其中鳞状细胞是主要的。在整个涂片线索中,广泛存在的分布(OOD)数据可降低机器学习系统用于GC检测的可靠性。尽管,最新的(SOTA)深度学习模型可以胜过感兴趣的预选区域中的病理学家,但是当面对这样的吉吉像素整个滑动图像时,质量假阳性(FP)预测仍无法解决。本文提出了一种基于GC的形态学知识,试图通过八邻居中的自我发项机制来解决FP问题的新极性知识。它估计了GC核的极性方向。作为插件模块,Polarnet可以指导一般对象检测模型的深度功能和预测的置信度。在实验中,我们发现基于四个不同框架的通用模型可以在小图像集中拒绝fp,并将平均精度(地图)的平均值增加$ \ text {0.007} \ sim \ sim \ text {0.015} $,其中平均最高超过了最近的宫颈细胞检测模型0.037。通过插入极地,部署的C ++程序在从外部WSI的前20个GC检测准确性上提高了8.8%,同时牺牲了14.4 s的计算时间。代码可在https://github.com/chrisa142857/polarnet-gcdet中找到
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10× or 100×? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between 'enormous data' and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pretraining) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-theart results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.
translated by 谷歌翻译
卷积神经网络(CNN)在许多计算机视觉任务(例如图像分类和对象检测)中取得了巨大的成功。但是,他们的性能在更艰巨的任务上迅速降低,因为图像是低分辨率或物体很小的。在本文中,我们指出,这根源于现有CNN体系结构中的有缺陷但常见的设计,即使用稳固的卷积和/或汇总层,这导致丢失细粒度的信息和学习较低有效的功能表示形式。为此,我们提出了一个新的CNN构建块,称为SPD-CONV,代替每个稳定的卷积层和每个池层(从而完全消除它们)。 SPD-CONV由一个对深度(SPD)层的组成,然后是非构造卷积(CORV)层,并且可以在大多数(如果不是全部)CNN体系结构中应用。我们在两个最具代表性的计算机视觉任务下解释了这种新设计:对象检测和图像分类。然后,我们通过将SPD-CONV应用于Yolov5和Resnet来创建新的CNN体​​系结构,并从经验上表明,我们的方法显着优于最先进的深度学习模型,尤其是在具有低分辨率图像和小物体的更艰巨的任务上。我们已经在https://github.com/labsaint/spd-conv上开源代码。
translated by 谷歌翻译