从汽车和交通检测到自动驾驶汽车系统,可以将街道对象的对象检测应用于各种用例。因此,找到最佳的对象检测算法对于有效应用它至关重要。已经发布了许多对象检测算法,许多对象检测算法比较了对象检测算法,但是很少有人比较了最新的算法,例如Yolov5,主要是侧重于街道级对象。本文比较了各种单阶段探测器算法; SSD MobilenetV2 FPN-Lite 320x320,Yolov3,Yolov4,Yolov5L和Yolov5S在实时图像中用于街道级对象检测。该实验利用了带有3,169张图像的修改后的自动驾驶汽车数据集。数据集分为火车,验证和测试;然后,使用重新处理,色相转移和噪音对其进行预处理和增强。然后对每种算法进行训练和评估。基于实验,算法根据推论时间及其精度,召回,F1得分和平均平均精度(MAP)产生了不错的结果。结果还表明,Yolov5L的映射@.5 of 0.593,MobileNetV2 FPN-Lite的推理时间最快,而其他推理时间仅为3.20ms。还发现Yolov5s是最有效的,其具有Yolov5L精度和速度几乎与MobilenetV2 FPN-Lite一样快。这表明各种算法适用于街道级对象检测,并且足够可行,可以用于自动驾驶汽车。
translated by 谷歌翻译
水果苍蝇是果实产量最有害的昆虫物种之一。在AlertTrap中,使用不同的最先进的骨干功能提取器(如MobiLenetv1和MobileNetv2)的SSD架构的实现似乎是实时检测问题的潜在解决方案。SSD-MobileNetv1和SSD-MobileNetv2表现良好并导致AP至0.5分别为0.957和1.0。YOLOV4-TINY优于SSD家族,在AP@0.5中为1.0;但是,其吞吐量速度略微慢。
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
我们可以看到这一切吗?我们知道这一切吗?这些是我们当代社会中人类提出的问题,以评估我们解决问题的趋势。最近的研究探索了对象检测中的几种模型。但是,大多数人未能满足对客观性和预测准确性的需求,尤其是在发展中和发达国家中。因此,几种全球安全威胁需要开发有效解决这些问题的方法。本文提出了一种被称为智能监视系统(3S)的网络物理系统的对象检测模型。这项研究提出了一种2阶段的方法,突出了Yolo V3深度学习体系结构在实时和视觉对象检测中的优势。该研究实施了一种转移学习方法,以减少培训时间和计算资源。用于培训模型的数据集是MS COCO数据集,其中包含328,000个注释的图像实例。实施了深度学习技术,例如预处理,数据管道调查和检测,以提高效率。与其他新型研究模型相比,该模型的结果在检测监视镜头中的野生物体方面表现出色。记录了99.71%的精度,改进的地图为61.5。
translated by 谷歌翻译
如今,使用微创手术(MIS)进行了更多的手术程序。这是由于其许多好处,例如最小的术后问题,较少的出血,较小的疤痕和快速的康复。但是,MIS的视野,小手术室和对操作场景的间接查看可能导致手术工具发生冲突并可能损害人体器官或组织。因此,通过使用内窥镜视频饲料实时检测和监视手术仪器,可以大大减少MIS问题,并且可以提高手术程序的准确性和成功率。在本文中,研究,分析和评估了对Yolov5对象检测器的一系列改进,以增强手术仪器的检测。在此过程中,我们进行了基于性能的消融研究,探索了改变Yolov5模型的骨干,颈部和锚固结构元素的影响,并注释了独特的内窥镜数据集。此外,我们将消融研究的有效性与其他四个SOTA对象探测器(Yolov7,Yolor,Scaled-Yolov4和Yolov3-SPP)进行了比较。除了Yolov3-SPP(在MAP中具有98.3%的模型性能和相似的推理速度)外,我们的所有基准模型(包括原始的Yolov5)在使用新的内窥镜数据集的实验中超过了我们的顶级精制模型。
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
作为自治车辆和自主赛车的竞争程度,所以需要更快,更准确的探测器。虽然我们的裸眼能够几乎立即提取上下文信息,但即使从远处地,图像分辨率和计算资源限制也使检测到较小的对象(即占用输入图像中小像素区域的对象)机器的真正具有挑战性的任务和一个广泛的研究领域。本研究探讨了如何修改流行的yolov5对象检测器以改善其在检测较小物体时的性能,具有自主赛车的特定应用。为实现这一目标,我们调查如何更换模型的某些结构元素(以及它们的连接和其他参数)可以影响性能和推理时间。在这样做时,我们提出了一系列模型,在不同的尺度上,我们命名为“YOLO-Z”,当时在50%iou的较小物体时,在地图上显示出高达6.9%的提高,以仅仅a与原始yolov5相比,推理时间增加3ms。我们的目标是为未来的研究提供调整流行检测器的可能性,例如YOLOV5以解决特定任务,并提供关于具体变化如何影响小对象检测的洞察。应用于自动车辆的更广泛背景的这种发现可以增加这些系统可用的上下文信息的量。
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译
弹药废料检查是回收弹药金属废料的过程中的重要步骤。大多数弹药由许多组件组成,包括盒子,底漆,粉末和弹丸。包含能量学的弹药废料被认为是潜在危险的,应在回收过程之前分离。手动检查每片废料都是乏味且耗时的。我们已经收集了一个弹药组件的数据集,目的是应用人工智能自动对安全和不安全的废料进行分类。首先,通过弹药的视觉和X射线图像手动创建两个培训数据集。其次,使用直方图均衡,平均,锐化,功率定律和高斯模糊的空间变换来增强X射线数据集,以补偿缺乏足够的训练数据。最后,应用代表性的Yolov4对象检测方法用于检测弹药组件并分别将废料片分别为安全和不安全的类。训练有素的模型针对看不见的数据进行了测试,以评估应用方法的性能。实验证明了使用深度学习的弹药组件检测和分类的可行性。数据集和预培训模型可在https://github.com/hadi-ghnd/scrap-classification上获得。
translated by 谷歌翻译
The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-toapples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [31], R-FCN [6] and SSD [26] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
translated by 谷歌翻译
The task of locating and classifying different types of vehicles has become a vital element in numerous applications of automation and intelligent systems ranging from traffic surveillance to vehicle identification and many more. In recent times, Deep Learning models have been dominating the field of vehicle detection. Yet, Bangladeshi vehicle detection has remained a relatively unexplored area. One of the main goals of vehicle detection is its real-time application, where `You Only Look Once' (YOLO) models have proven to be the most effective architecture. In this work, intending to find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh, we have conducted a performance analysis of different variants of the YOLO-based architectures such as YOLOV3, YOLOV5s, and YOLOV5x. The models were trained on a dataset containing 7390 images belonging to 21 types of vehicles comprising samples from the DhakaAI dataset, the Poribohon-BD dataset, and our self-collected images. After thorough quantitative and qualitative analysis, we found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
遵循机器视觉系统在线自动化质量控制和检查过程的成功之后,这项工作中为两个不同的特定应用提供了一种对象识别解决方案,即,在医院准备在医院进行消毒的手术工具箱中检测质量控制项目,以及检测血管船体中的缺陷,以防止潜在的结构故障。该解决方案有两个阶段。首先,基于单镜头多伯克斯检测器(SSD)的特征金字塔体系结构用于改善检测性能,并采用基于地面真实的统计分析来选择一系列默认框的参数。其次,利用轻量级神经网络使用回归方法来实现定向检测结果。该方法的第一阶段能够检测两种情况下考虑的小目标。在第二阶段,尽管很简单,但在保持较高的运行效率的同时,检测细长目标是有效的。
translated by 谷歌翻译
腕骨骨折是医院的常见情况,特别是在紧急服务中。医生需要来自各种医疗设备的图像,以及患者的病史和身体检查,正确诊断这些骨折并采用适当的治疗。本研究旨在使用腕X射线图像的深度学习进行骨折检测,以帮助专门在现场专门的医生,特别是在骨折的诊断中工作。为此目的,使用从Gazi大学医院获得的腕X射线图像数据集的基于深度学习的物体检测模型来执行20个不同的检测程序。这里使用了DCN,动态R_CNN,更快的R_CNN,FSAF,Libra R_CNN,PAA,RetinAnet,Regnet和具有各种骨架的基于SABL深度学习的物体检测模型。为了进一步改进研究中的检测程序,开发了5种不同的集合模型,后来用于改革集合模型,为我们的研究开发一个独一无二的检测模型,标题为腕骨骨折检测组合(WFD_C)。根据检测到总共26种不同的骨折,检测结果的最高结果是WFD_C模型中的0.8639平均精度(AP50)。本研究支持华为土耳其研发中心,范围在持续的合作项目编码071813中,华为大学,华为和Medskor。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
电子踏板车已成为全球主要城市的无处不在的车辆。电子摩托车的数量不断升级,增加了与路上其他汽车的互动。 E-Scooter Rider的正常行为对其他易受攻击的道路使用者不同。这种情况为车辆主动安全系统和自动化驾驶功能创造了新的挑战,这需要检测电子踏板车作为第一步。为了我们的最佳知识,没有现有的计算机视觉模型来检测这些电子踏板车骑手。本文介绍了一种基于愿景的基于视觉的系统,可以区分电子踏板车骑车者和常规行人以及自然场景中的电子踏板车骑手的基准数据集。我们提出了一个高效的管道,建立了两种现有的最先进的卷积神经网络(CNN),您只需看一次(Yolov3)和MobileNetv2。我们在我们的数据集中微调MobileNetv2并培训模型以对电子踏板车骑手和行人进行分类。我们在原始测试样品上获得大约0.75左右的召回,以将电子踏板车骑手与整个管道进行分类。此外,YOLOV3顶部培训的MobileNetv2的分类精度超过91%,具有精度,召回超过0.9。
translated by 谷歌翻译
Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency communications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient, and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet} (\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs, we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to overcome the computational cost by training the model on a specific feature map rather than all the features. The dataset and code are available as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.
translated by 谷歌翻译
尽管Yolov2方法在对象检测时非常快,但由于其骨干网络的性能较低和多尺度区域特征的缺乏,其检测准确性受到限制。因此,在本文中提出了一种基于Yolov2的Yolo(DC)Yolo(DC-SPP-YOLO)方法的密集连接(DC)和空间金字塔池(SPP)方法。具体而言,在Yolov2的骨干网络中采用了卷积层的密集连接,以增强特征提取并减轻消失的梯度问题。此外,引入了改进的空间金字塔池以池并加入多尺度区域特征,以便网络可以更全面地学习对象功能。 DC-SPP-YOLO模型是根据由MSE(均方误差)损耗和跨透镜损失组成的新损失函数建立和训练的。实验结果表明,DC-SPP-Yolo的地图(平均平均精度)高于Pascal VOC数据集和UA-Detrac数据集上的Yolov2。提出了DC-SPP-Yolo方法的有效性。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
2019年冠状病毒为全球社会稳定和公共卫生带来了严重的挑战。遏制流行病的一种有效方法是要求人们在公共场所戴口罩,并通过使用合适的自动探测器来监视戴口罩状态。但是,现有的基于深度学习的模型努力同时达到高精度和实时性能的要求。为了解决这个问题,我们提出了基于Yolov5的改进的轻质面膜探测器,该检测器可以实现精确和速度的良好平衡。首先,提出了将ShuffleNetV2网络与协调注意机制相结合的新型骨干轮弹工具作为骨干。之后,将有效的路径攻击网络BIFPN作为特征融合颈应用。此外,在模型训练阶段,定位损失被α-CIOU取代,以获得更高质量的锚。还利用了一些有价值的策略,例如数据增强,自适应图像缩放和锚点群集操作。 Aizoo面膜数据集的实验结果显示了所提出模型的优越性。与原始的Yolov5相比,提出的模型将推理速度提高28.3%,同时仍将精度提高0.58%。与其他七个现有型号相比,它的最佳平均平均精度为95.2%,比基线高4.4%。
translated by 谷歌翻译