尽管已显示触觉皮肤可用于检测机器人臂及其环境之间的碰撞,但并未广泛用于改善机器人抓握和手持操作。我们提出了一种新型的传感器设计,用于覆盖现有的多指机器人手。我们在台式实验中使用织物和抗静态泡沫底物分析了四种不同的压电材料的性能。我们发现,尽管压电泡沫被设计为包装材料,而不是用作传感底物,但它的性能与专门为此目的设计的织物相当。尽管这些结果证明了压电泡沫对触觉传感应用的潜力,但它们并未完全表征这些传感器在机器人操作中使用的功效。因此,我们使用低密度泡沫底物来开发可扩展的触觉皮肤,该皮肤可以连接到机器人手的手掌上。我们使用该传感器展示了几项机器人操纵任务,以显示其可靠地检测和本地化接触的能力,并在掌握和运输任务期间分析接触模式。我们的项目网站提供了有关传感器开发和分析中使用的所有材料,软件和数据的详细信息:https://sites.google.com/gcloud.utah.edu/piezoresistive-tactile-sensing/。
translated by 谷歌翻译
软机器人是一个新兴领域,对需要与环境或人类的安全性和强大的互动的任务产生了有希望的结果,例如抓握,操纵和人机互动。软机器依赖于本质上兼容的部件,并且难以配备传统的刚性传感器,这些传统传感器会干扰其合规性。我们提出了一种高度灵活的触觉传感器,在低成本且易于制造,同时独立于14个出租车测量接触压力。传感器由压阻织物构成,用于高度敏感,连续的响应,以及来自定制设计的柔性印刷电路板,提供高的Taxel密度。从这些TaxLes,可以推断出与传感器的接触位置和强度。在本文中,我们解释了所提出的传感器的设计和制造,表征其输入输出关系,在装备到软机器人RBO手2的硅树脂基气动执行器时,评估其对遵守的影响,并证明传感器提供基于学习的携手对象识别的丰富和有用的反馈。
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
预计机器人将掌握形状,重量或材料类型各不相同的广泛物体。因此,为机器人提供类似于人类的触觉功能对于涉及人与人机或机器人与机器人相互作用的应用至关重要,尤其是在那些期望机器人掌握和操纵以前未遇到的复杂物体的情况下。成功的对象掌握和操纵的关键方面是使用配备多个高性能传感器的高质量指尖,在特定的接触表面上适当分布。在本文中,我们介绍了使用两种不同类型的市售机器人指尖(Biotac和wts-ft)的使用的详细分析,每个机器人指尖(Biotac和wts-ft)配备了分布在指尖的接触表面上的多个传感器。我们进一步证明,由于指尖的高性能,不需要一种复杂的自适应抓握算法来抓住日常物体。我们得出的结论是,只要相关的指尖表现出较高的灵敏度,基于比例控制器的简单算法就足够了。在量化的评估中,我们还证明,部分由于传感器的分布,基于BioTAC的指尖的性能优于WTS-FT设备,可以使负载升高至850G,并且简单的比例控制器可以适应该载荷即使对象面临重大的外部振动挑战,也要掌握。
translated by 谷歌翻译
通过触觉反馈感知物体滑移的能力使人类能够完成复杂的操纵任务,包括保持稳定的掌握。尽管触觉信息用于许多应用程序,但触觉传感器尚未在工业机器人设置中广泛部署。挑战的一部分在于从触觉数据流中识别滑移和其他事件。在本文中,我们提出了一种基于学习的方法,可以使用气压触觉传感器检测滑移。这些传感器具有许多理想的属性,包括高耐用性和可靠性,并且由廉价的现成组件构建。我们训练一个时间卷积神经网络来检测滑动,达到高检测精度,同时表现出稳健性,以对滑动运动的速度和方向。此外,我们在涉及各种常见对象的两项操纵任务上测试了探测器,并证明了对训练期间看不到的现实情况的成功概括。我们认为,气压触觉传感技术与数据驱动的学习相结合,适用于许多操纵任务,例如滑移补偿。
translated by 谷歌翻译
人类的物体感知能力令人印象深刻,当试图开发具有类似机器人的解决方案时,这变得更加明显。从人类如何将视觉和触觉用于对象感知和相关任务的灵感中,本文总结了机器人应用的多模式对象感知的当前状态。它涵盖了生物学灵感,传感器技术,数据集以及用于对象识别和掌握的感觉数据处理的各个方面。首先,概述了多模式对象感知的生物学基础。然后讨论了传感技术和数据收集策略。接下来,介绍了主要计算方面的介绍,突出显示了每个主要应用领域的一些代表性文章,包括对象识别,传输学习以及对象操纵和掌握。最后,在每个领域的当前进步中,本文概述了有希望的新研究指示。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
尽管有触觉信息的实用性,但触觉传感器尚未在工业机器人设置中广泛部署。挑战的一部分在于识别触觉数据流的滑移和其他关键事件。在本文中,我们提出了一种基于学习的方法,可以使用气压触觉传感器检测滑移。尽管这些传感器的分辨率很低,但它们具有许多其他理想的特性,包括高可靠性和耐用性,非常苗条的轮廓和低成本。我们能够实现大于91%的滑动检测精度,同时稳健地遵循滑动运动的速度和方向。此外,我们在涉及常见家庭对象的两个机器人操纵任务上测试了我们的探测器,并证明了对训练期间未见的现实情况的成功概括。我们表明,气压触觉传感技术与数据驱动的学习相结合,可能适用于复杂的操纵任务,例如滑移补偿。
translated by 谷歌翻译
人类可以利用身体互动来教机器人武器。当人类的动力学通过示范引导机器人时,机器人学习了所需的任务。尽管先前的工作重点是机器人学习方式,但对于人类老师来说,了解其机器人正在学习的内容同样重要。视觉显示可以传达此信息;但是,我们假设仅视觉反馈就错过了人与机器人之间的物理联系。在本文中,我们介绍了一类新颖的软触觉显示器,这些显示器包裹在机器人臂上,添加信号而不会影响相互作用。我们首先设计一个气动驱动阵列,该阵列在安装方面保持灵活。然后,我们开发了这种包裹的触觉显示的单一和多维版本,并在心理物理测试和机器人学习过程中探索了人类对渲染信号的看法。我们最终发现,人们以11.4%的韦伯(Weber)分数准确区分单维反馈,并以94.5%的精度确定多维反馈。当物理教授机器人臂时,人类利用单维反馈来提供比视觉反馈更好的演示:我们包装的触觉显示会降低教学时间,同时提高演示质量。这种改进取决于包裹的触觉显示的位置和分布。您可以在此处查看我们的设备和实验的视频:https://youtu.be/ypcmgeqsjdm
translated by 谷歌翻译
触觉感应是执行灵巧操纵任务的机器人的基本能力。虽然相机,LIDAR和其他远程传感器可以在全球和立即评估场景,但触觉传感器可以减少它们的测量不确定性,并在往复对象和机器人之间获得局部物理交互的信息,这通常不能通过遥感。触觉传感器可以分为两个主要类别:电子触觉皮肤和基于相机的光学触觉传感器。前者是薄薄的并且可以安装在不同的身体部位上,而后者呈现更棱柱形状并具有更高的感测分辨率,具有良好的优势,可以用作机器人手指或指尖。这种光学触觉传感器之一是我们的Geltip传感器,其成形为手指,并且可以在其表面的任何位置感接触。这样,Geltip传感器能够从所有方向上检测触点,如人的手指。为了捕获这些触点,它使用安装在其基部的相机来跟踪覆盖其空心,刚性和透明体的不透明弹性体的变形。由于这种设计,配备盖施电流传感器的夹具能够同时监测其掌握内外的触点。使用该传感器进行的实验表明了触点是如何定位的,更重要的是,利用杂波中的Dexterous操纵任务中的全面触摸感测的优点,甚至可能是必要的,其中触点可能发生在手指的任何位置。可以在HTTPS://Danfergo.github.io/geltip/中找到制造Geltip传感器的所有材料
translated by 谷歌翻译
触摸感在使人类能够理解和与周围环境互动方面发挥着关键作用。对于机器人,触觉感应也是不可替代的。在与物体交互时,触觉传感器为机器人提供了理解物体的有用信息,例如分布式压力,温度,振动和纹理。在机器人抓住期间,视力通常由其最终效应器封闭,而触觉感应可以测量视觉无法访问的区域。在过去的几十年中,已经为机器人开发了许多触觉传感器,并用于不同的机器人任务。在本章中,我们专注于使用触觉对机器人抓握的触觉,并研究近期对物质性质的触觉趋势。我们首先讨论了术语,即形状,姿势和材料特性对三个重要的物体特性的触觉感知。然后,我们通过触觉感应审查抓握稳定性预测的最新发展。在这些作品中,我们确定了在机器人抓握中协调视觉和触觉感应的要求。为了证明使用触觉传感来提高视觉感知,介绍了我们最近的抗议重建触觉触觉感知的发展。在所提出的框架中,首先利用相机视觉的大型接收领域以便快速搜索含有裂缝的候选区域,然后使用高分辨率光学触觉传感器来检查这些候选区域并重建精制的裂缝形状。实验表明,我们所提出的方法可以实现0.82mm至0.24mm的平均距离误差的显着降低,以便重建。最后,我们在讨论了对机器人任务中施加触觉感应的公开问题和未来方向的讨论。
translated by 谷歌翻译
视觉的触觉传感器由于经济实惠的高分辨率摄像机和成功的计算机视觉技术而被出现为机器人触摸的有希望的方法。但是,它们的物理设计和他们提供的信息尚不符合真实应用的要求。我们提供了一种名为Insight的强大,柔软,低成本,视觉拇指大小的3D触觉传感器:它不断在其整个圆锥形感测表面上提供定向力分布图。围绕内部单眼相机构造,传感器仅在刚性框架上仅成型一层弹性体,以保证灵敏度,鲁棒性和软接触。此外,Insight是第一个使用准直器将光度立体声和结构光混合的系统来检测其易于更换柔性外壳的3D变形。通过将图像映射到3D接触力的空间分布(正常和剪切)的深神经网络推断力信息。洞察力在0.4毫米的总空间分辨率,力量幅度精度约为0.03 n,并且对于具有不同接触面积的多个不同触点,在0.03-2 n的范围内的5度大约5度的力方向精度。呈现的硬件和软件设计概念可以转移到各种机器人部件。
translated by 谷歌翻译
我们提出了一个本体感受的远程操作系统,该系统使用反身握把算法来增强拾取任务的速度和稳健性。该系统由两个使用准直接驱动驱动的操纵器组成,以提供高度透明的力反馈。末端效应器具有双峰力传感器,可测量3轴力信息和2维接触位置。此信息用于防滑和重新磨碎反射。当用户与所需对象接触时,重新抓紧反射将抓地力的手指与对象上的抗肌点对齐,以最大程度地提高抓握稳定性。反射仅需150毫秒即可纠正用户选择的不准确的grasps,因此用户的运动仅受到Re-Grasp的执行的最小干扰。一旦建立了抗焦点接触,抗滑动反射将确保抓地力施加足够的正常力来防止物体从抓地力中滑出。本体感受器的操纵器和反射抓握的结合使用户可以高速完成远程操作的任务。
translated by 谷歌翻译
我们引入了一个球形指尖传感器进行动态操作。它基于气压压力和飞行时间接近传感器,并且是低延迟,紧凑且身体健壮的。传感器使用训练有素的神经网络根据压力传感器的数据来估计接触位置和三轴接触力,这些数据嵌入了传感器的聚氨酯橡胶范围内。飞行器传感器朝三个不同的外向方向面对,并且一个集成的微控制器样品以200 Hz的速度每个单个传感器。为了量化系统潜伏期对动态操作性能的影响,我们开发和分析了一个称为碰撞脉冲比率的度量,并表征了我们新传感器的端到端潜伏期。我们还向传感器提出了实验演示,包括测量接触过渡,进行粗大映射,与移动物体保持接触力以及避免碰撞的反应。
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
Effective force modulation during tissue manipulation is important for ensuring safe robot-assisted minimally invasive surgery (RMIS). Strict requirements for in-vivo distal force sensing have led to prior sensor designs that trade off ease of manufacture and integration against force measurement accuracy along the tool axis. These limitations have made collecting high-quality 3-degree-of-freedom (3-DoF) bimanual force data in RMIS inaccessible to researchers. We present a modular and manufacturable 3-DoF force sensor that integrates easily with an existing RMIS tool. We achieve this by relaxing biocompatibility and sterilizability requirements while utilizing commercial load cells and common electromechanical fabrication techniques. The sensor has a range of +-5 N axially and +-3 N laterally with average root mean square errors(RMSEs) of below 0.15 N in all directions. During teleoperated mock tissue manipulation tasks, a pair of jaw-mounted sensors achieved average RMSEs of below 0.15 N in all directions. For grip force, it achieved an RMSE of 0.156 N. The sensor has sufficient accuracy within the range of forces found in delicate manipulation tasks, with potential use in bimanual haptic feedback and robotic force control. As an open-source design, the sensors can be adapted to suit additional robotic applications outside of RMIS.
translated by 谷歌翻译
我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获取的一组对象。我们的结果表明,尽管视觉,深度和触觉感测的组合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。
translated by 谷歌翻译
意识到高性能软机器人抓手是具有挑战性的,因为软执行器和人造肌肉的固有局限性。尽管现有的软机器人抓手表现出可接受的性能,但他们的设计和制造仍然是一个空旷的问题。本文探索了扭曲的弦乐执行器(TSA),以驱动软机器人抓手。 TSA已被广泛用于众多机器人应用中,但它们包含在软机器人中是有限的。提议的抓手设计灵感来自人类手,四个手指和拇指。通过使用拮抗剂TSA,在手指中实现了可调刚度。手指的弯曲角度,驱动速度,阻塞力输出和刚度调整是实验表征的。抓手能够在Kapandji测试中获得6分,并且还可以达到33个Feix Grasp Grasp分类法中的31个。一项比较研究表明,与其他类似抓手相比,提出的抓手表现出等效或卓越的性能。
translated by 谷歌翻译
软机器人抓手有助于富含接触的操作,包括对各种物体的强大抓握。然而,软抓手的有益依从性也会导致重大变形,从而使精确的操纵具有挑战性。我们提出视觉压力估计与控制(VPEC),这种方法可以使用外部摄像头的RGB图像施加的软握力施加的压力。当气动抓地力和肌腱握力与平坦的表面接触时,我们为视觉压力推断提供了结果。我们还表明,VPEC可以通过对推断压力图像的闭环控制进行精确操作。在我们的评估中,移动操纵器(来自Hello Robot的拉伸RE1)使用Visual Servoing在所需的压力下进行接触;遵循空间压力轨迹;并掌握小型低调的物体,包括microSD卡,一分钱和药丸。总体而言,我们的结果表明,对施加压力的视觉估计可以使软抓手能够执行精确操作。
translated by 谷歌翻译
我们提出了一种使用嵌入式麦克风和扬声器来测量不同执行器特性的软气动执行器的感应方法。执行器的物理状态确定声音通过结构传播时的特定调制。使用简单的机器学习,我们创建了一个计算传感器,该传感器从声音录音中渗透相应的状态。我们在软气动连续执行器上演示了声传感器,并使用它来测量接触位置,接触力,对象材料,执行器通胀和执行器温度。我们表明该传感器是可靠的(六个接触位置的平均分类速率为93%),精确(平均空间精度为3.7毫米),并且可抵抗常见的干扰(如背景噪声)。最后,我们比较了不同的声音和学习方法,并以20毫秒的白噪声和支持向量分类器作为传感器模型获得最佳结果。
translated by 谷歌翻译