分布式推理(DI)框架已经获得了牵引力作为用于实时应用的技术,用于在资源受限的内容(物联网)设备上的尖端深机学习(ML)。在DI中,计算任务通过IOT设备通过有损的物联网网络从物联网设备卸载到边缘服务器。然而,通常,在通信延迟和可靠性之间存在通信系统级权衡;因此,为了提供准确的DI结果,需要一种可靠和高等待的通信系统来调整,这导致DI的不可忽略的端到端潜伏期。这激励我们通过ML技术的努力来改善通信延迟与准确性之间的权衡。具体而言,我们提出了一种以通信为导向的模型调谐(ComTune),其旨在通过低延迟但不可靠的通信链路实现高度精确的DI。在Comtune中,关键的想法是通过应用辍学技术的应用来微调不可靠通信链路的效果。这使得DI系统能够针对不可靠的通信链路获得鲁棒性。我们的ML实验表明,ComTune使得能够以低延迟和有损网络在低延迟和损失网络下准确预测。
translated by 谷歌翻译
本文提出了一种用于拆分计算的神经体系结构搜索(NAS)方法。拆分计算是一种新兴的机器学习推理技术,可解决在物联网系统中部署深度学习的隐私和延迟挑战。在拆分计算中,神经网络模型通过网络使用Edge服务器和IoT设备进行了分离和合作处理。因此,神经网络模型的体系结构显着影响通信有效载荷大小,模型准确性和计算负载。在本文中,我们解决了优化神经网络体系结构以进行拆分计算的挑战。为此,我们提出了NASC,该NASC共同探讨了最佳模型架构和一个拆分点,以达到延迟需求(即,计算和通信的总延迟较小,都比某个阈值较小)。 NASC采用单发NAS,不需要重复模型培训进行计算高效的体系结构搜索。我们使用硬件(HW) - 基准数据的NAS基础的绩效评估表明,拟议的NASC可以改善``通信潜伏期和模型准确性''的权衡,即,将延迟降低了约40-60%,从基线降低了约40-60%有轻微的精度降解。
translated by 谷歌翻译
This paper aims to design robust Edge Intelligence using semantic communication for time-critical IoT applications. We systematically analyze the effect of image DCT coefficients on inference accuracy and propose the channel-agnostic effectiveness encoding for offloading by transmitting the most meaningful task data first. This scheme can well utilize all available communication resource and strike a balance between transmission latency and inference accuracy. Then, we design an effectiveness decoding by implementing a novel image augmentation process for convolutional neural network (CNN) training, through which an original CNN model is transformed into a Robust CNN model. We use the proposed training method to generate Robust MobileNet-v2 and Robust ResNet-50. The proposed Edge Intelligence framework consists of the proposed effectiveness encoding and effectiveness decoding. The experimental results show that the effectiveness decoding using the Robust CNN models perform consistently better under various image distortions caused by channel errors or limited communication resource. The proposed Edge Intelligence framework using semantic communication significantly outperforms the conventional approach under latency and data rate constraints, in particular, under ultra stringent deadlines and low data rate.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
智能物联网环境(iiote)由可以协作执行半自动的IOT应用的异构装置,其示例包括高度自动化的制造单元或自主交互收获机器。能量效率是这种边缘环境中的关键,因为它们通常基于由无线和电池运行设备组成的基础设施,例如电子拖拉机,无人机,自动引导车辆(AGV)S和机器人。总能源消耗从多种技术技术汲取贡献,使得能够实现边缘计算和通信,分布式学习以及分布式分区和智能合同。本文提供了本技术的最先进的概述,并说明了它们的功能和性能,特别关注资源,延迟,隐私和能源消耗之间的权衡。最后,本文提供了一种在节能IIOTE和路线图中集成这些能力技术的愿景,以解决开放的研究挑战
translated by 谷歌翻译
深神经网络(DNN)的成功在很大程度上取决于计算资源。虽然DNN经常在云服务器上使用,但在边缘设备上运行DNN的需求越来越大。边缘设备的计算资源通常受到限制,但是,通常将多个边缘设备部署在相同的环境中,并且可以可靠地相互通信。在这项工作中,我们建议通过允许多个用户在推理过程中协作以提高其准确性来促进DNN在优势上的应用。我们的机制(创造的机制)基于每个设备的各种预测因子,在推理过程中构成了模型集合。为了减轻通信开销,用户共享量化的功能,我们提出了一种将多个决策汇总到单个推论规则中的方法。我们分析了边缘合奏所引起的延迟,表明其性能提高是以在通信网络上的共同假设下的较小延迟成本为代价的。我们的实验表明,配备紧凑型DNN的Edge合奏的协作推断显着提高了让每个用户在本地推断出的精度,并且可以使用大于整体中所有网络的单个集中式DNN胜过。
translated by 谷歌翻译
在边缘云协作智能(CI)中,在执行推断的AI模型的信息路径中存在不可靠的传输信道。重要的是能够模拟CI系统对不完美信道的性能,以便理解系统行为并制定适当的错误控制策略。在本文中,我们提出了一个名为DFTS2的仿真框架,这使得研究人员能够在TensorFlow〜2中定义CI系统的组件,选择具有各种参数的基于分组的信道模型,并在各种信道条件下模拟系统行为和错误/丢失控制策略。使用DFTS2,我们还展示了迄今为止迄今为止用于协作图像分类模型的数据包丢失隐藏方法的最全面的研究。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
State-of-the-art performance for many emerging edge applications is achieved by deep neural networks (DNNs). Often, these DNNs are location and time sensitive, and the parameters of a specific DNN must be delivered from an edge server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks. In this paper, we introduce AirNet, a novel training and transmission method that allows efficient wireless delivery of DNNs under stringent transmit power and latency constraints. We first train the DNN with noise injection to counter the wireless channel noise. Then we employ pruning to reduce the network size to the available channel bandwidth, and perform knowledge distillation from a larger model to achieve satisfactory performance, despite pruning. We show that AirNet achieves significantly higher test accuracy compared to digital alternatives under the same bandwidth and power constraints. The accuracy of the network at the receiver also exhibits graceful degradation with channel quality, which reduces the requirement for accurate channel estimation. We further improve the performance of AirNet by pruning the network below the available bandwidth, and using channel expansion to provide better robustness against channel noise. We also benefit from unequal error protection (UEP) by selectively expanding more important layers of the network. Finally, we develop an ensemble training approach, which trains a whole spectrum of DNNs, each of which can be used at different channel condition, resolving the impractical memory requirements.
translated by 谷歌翻译
最近,使用卷积神经网络(CNNS)存在移动和嵌入式应用的爆炸性增长。为了减轻其过度的计算需求,开发人员传统上揭示了云卸载,突出了高基础设施成本以及对网络条件的强烈依赖。另一方面,强大的SOC的出现逐渐启用设备执行。尽管如此,低端和中层平台仍然努力充分运行最先进的CNN。在本文中,我们展示了Dyno,一种分布式推断框架,将两全其人的最佳框架结合起来解决了几个挑战,例如设备异质性,不同的带宽和多目标要求。启用这是其新的CNN特定数据包装方法,其在onloading计算时利用CNN的不同部分的精度需求的可变性以及其新颖的调度器,该调度器共同调谐分区点并在运行时传输数据精度适应其执行环境的推理。定量评估表明,Dyno优于当前最先进的,通过竞争对手的CNN卸载系统,在竞争对手的CNN卸载系统上提高吞吐量超过一个数量级,最高可达60倍的数据。
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
迄今为止,通信系统主要旨在可靠地交流位序列。这种方法提供了有效的工程设计,这些设计对消息的含义或消息交换所旨在实现的目标不可知。但是,下一代系统可以通过将消息语义和沟通目标折叠到其设计中来丰富。此外,可以使这些系统了解进行交流交流的环境,从而为新颖的设计见解提供途径。本教程总结了迄今为止的努力,从早期改编,语义意识和以任务为导向的通信开始,涵盖了基础,算法和潜在的实现。重点是利用信息理论提供基础的方法,以及学习在语义和任务感知通信中的重要作用。
translated by 谷歌翻译
尽管关键任务应用需要使用深神经网络(DNN),但它们在移动设备的连续执行导致能耗的显着增加。虽然边缘卸载可以降低能量消耗,但信道质量,网络和边缘服务器负载中的不稳定模式可能导致系统的关键操作严重中断。一种被称为分割计算的替代方法,在模型中生成压缩表示(称为“瓶颈”),以降低带宽使用和能量消耗。事先工作已经提出了引入额外层的方法,以损害能耗和潜伏期。因此,我们提出了一个名为BoleFit的新框架,除了有针对性的DNN架构修改之外,还包括一种新颖的培训策略,即使具有强大的压缩速率,即使具有强大的压缩速率也能实现高精度。我们在图像分类中施加瓶装装饰品,并显示瓶装装备在想象中数据集中实现了77.1%的数据压缩,高达0.6%的精度损耗,而诸如Spinn的最佳精度高达6%。我们通过实验测量在NVIDIA Jetson Nano板(基于GPU)和覆盆子PI板上运行的图像分类应用的功耗和等待时间(GPU - 更低)。我们表明,对于(W.R.T.)本地计算分别降低了高达49%和89%的功耗和延迟,局部计算和37%和55%W.r.t.t.边缘卸载。我们还比较了具有基于最先进的自动化器的方法的瓶装方法,并显示了(i)瓶子分别将功耗和执行时间降低了高达54%和44%,覆盆子上的40%和62% pi; (ii)在移动设备上执行的头部模型的大小为83倍。代码存储库将被公布以获得结果的完全可重复性。
translated by 谷歌翻译
联合学习(FL)是使用无线网络中的分布式移动数据训练AI模型的流行框架。它通过将学习任务分发到多个边缘设备时,它具有数据并行性,同时尝试保留本地数据隐私。面对实际FL的一个主要挑战是资源受限制的设备与更新深神经网络模型的计算密集型任务斗争。为了解决挑战,在本文中,建立了一种联邦辍学(FedDrop)方案,建立了随机模型修剪的经典辍学方案。具体地,在FL算法的每次迭代中,使用辍学器的全局模型独立地生成几个子网,但是使用异构丢失率(即,参数提示概率),每个丢弃率(即,参数 - 修剪概率),每个丢弃率(即,参数 - 修剪概率)都适应分配信道的状态。子网将被下载到相关设备以进行更新。因此,FedDrop减少了与传统FL相比的通信开销和设备的计算负载,而在过度装箱的情况下优于后者并且还具有均匀丢失(即相同子网)的流程。
translated by 谷歌翻译
诸如智能手机和自治车辆的移动设备越来越依赖深神经网络(DNN)来执行复杂的推理任务,例如图像分类和语音识别等。但是,在移动设备上连续执行整个DNN可以快速消耗其电池。虽然任务卸载到云/边缘服务器可能会降低移动设备的计算负担,但信道质量,网络和边缘服务器负载中的不稳定模式可能导致任务执行的显着延迟。最近,已经提出了基于分割计算(SC)的方法,其中DNN被分成在移动设备上和边缘服务器上执行的头部和尾模型。最终,这可能会降低带宽使用以及能量消耗。另一种叫做早期退出(EE)的方法,列车模型在架构中呈现多个“退出”,每个都提供越来越高的目标准确性。因此,可以根据当前条件或应用需求进行准确性和延迟之间的权衡。在本文中,我们通过呈现最相关方法的比较,对SC和EE策略进行全面的综合调查。我们通过提供一系列引人注目的研究挑战来结束论文。
translated by 谷歌翻译
新兴的边缘情报应用程序要求服务器重新训练和更新部署在远程边缘节点上的深神经网络,以利用新收集的数据示例。不幸的是,由于高度严格的通信资源,在实践中可能不可能连续向这些边缘节点发送全面更新的权重。在本文中,我们提出了重量的深层部分更新范式,该范式巧妙地选择了一小部分权重以在每个服务器到边缘通信中进行更新,同时与完整更新相比实现了相似的性能。我们的方法是通过分析上限的部分更新和完整更新之间的损失差异来建立的,并且只能更新权重,从而对上限产生最大的贡献。广泛的实验结果证明了我们部分更新方法的功效,该方法在更新少量的权重的同时,可以达到高推理精度。
translated by 谷歌翻译
大规模的神经网络具有相当大的表现力。它们非常适合工业应用中的复杂学习任务。但是,在当前联邦学习(FL)范式下,大型模型对训练构成了重大挑战。现有的有效FL训练的方法通常利用模型参数辍学。但是,操纵单个模型参数不仅在训练大规模FL模型时有意义地减少通信开销效率低下,而且还可能不利于缩放工作和模型性能,如最近的研究所示。为了解决这些问题,我们提出了联合的机会障碍辍学方法(FEDOBD)方法。关键的新颖性是,它将大规模模型分解为语义块,以便FL参与者可以机会上传量化的块,这些块被认为对训练该模型非常重要,以供FL服务器进行聚合。基于多个现实世界数据集的五种最先进方法评估FEDOBD的广泛实验表明,与最佳性能基线方法相比,它将整体通信开销降低了70%以上,同时达到了最高的测试准确性。据我们所知,FEDOBD是在块级别而不是在单个参数级别上执行FL模型上辍学的第一种方法。
translated by 谷歌翻译
5G建筑和深度学习的融合在无线通信和人工智能领域都获得了许多研究兴趣。这是因为深度学习技术已被确定为构成5G体系结构的5G技术的潜在驱动力。因此,关于5G架构和深度学习的融合进行了广泛的调查。但是,大多数现有的调查论文主要集中于深度学习如何与特定的5G技术融合,因此,不涵盖5G架构的全部范围。尽管最近有一份调查文件似乎很强大,但对该论文的评论表明,它的结构不佳,无法专门涵盖深度学习和5G技术的收敛性。因此,本文概述了关键5G技术和深度学习的融合。讨论了这种融合面临的挑战。此外,还讨论了对未来6G体系结构的简要概述,以及如何与深度学习进行融合。
translated by 谷歌翻译
先进的可穿戴设备越来越多地利用高分辨率多摄像头系统。作为用于处理所得到的图像数据的最先进的神经网络是计算要求的,对于利用第五代(5G)无线连接和移动边缘计算,已经越来越感兴趣,以将该处理卸载到云。为了评估这种可能性,本文提出了一个详细的仿真和评估,用于5G无线卸载,用于对象检测,在一个名为Vis4ion的强大新型智能可穿戴物中,用于盲目损害(BVI)。目前的Vis4ion系统是一种具有高分辨率摄像机,视觉处理和触觉和音频反馈的仪表簿。本文认为将相机数据上载到移动边缘云以执行实时对象检测并将检测结果传输回可穿戴。为了确定视频要求,纸张评估视频比特率和分辨率对物体检测精度和范围的影响。利用与BVI导航相关的标记对象的新街道场景数据集进行分析。视觉评估与详细的全堆栈无线网络仿真结合,以确定吞吐量的分布和延迟,具有来自城市环境中的新高分辨率3D模型的实际导航路径和射线跟踪。为了比较,无线仿真考虑了标准的4G长期演进(LTE)载波和高速度5G毫米波(MMWAVE)载波。因此,该工作提供了对具有高带宽和低延迟要求的应用中的MMWAVE连接的边缘计算的彻底和现实评估。
translated by 谷歌翻译